
SPARQL
Querying the Semantic Web



How to query RDF datasets?

• Now that we have data in RDF(S), we should be able to 
query and update it

• Using RDF(S) semantics could be an alternative
- If we wanted to know whether ex:jja is a professor, we could 

check if the following triple is a consequence of the graph 
 
ex:jja rdf:type uni:Professor

- Or, if we want to know who are the professors, we could check 
which triples of the form  X rdf:type uni:Professor    
belong to the closure of the RDF graph



Querying RDF with RDFS

• How far could we take the approach?
- Ask whether a given triple is a consequence
- Ask for the resources that are instances of a class
- Ask whether a class subsumes another class

• For example:
- Who are the associate or full professors?

- Define a new class uni:ProfOrAssoc, as a superclass of 
uni:Professor and of uni:Associate, and then ask 
for the instances of that new class

- Who are the ones  who teach something?
- Define a new class uni:teacher, and add that the 

rdfs:domain of ex:teaches is (also) uni:teacher. 
Then ask for the instances of this new class 



Querying RDF with RDFS

• What about:
- Who are the professors who teach something?
- Who are the professors older than 50 years?
- Who are the students involved in courses taught by 

ex:jja?
- Who are the pairs of students who share a common 

professor at any of the courses they are involved in?

• RDFS is not expressive enough!
- It is not possible to define classes who gather all the 

individuals that satisfy the conditions in the above 
queries

• A more expressive query language is needed.



Querying RDF/XML

• What if we use XML query languages, and directly query 
the RDF/XML encoding?

- One can just view the RDF as an XML file, and use XPath, or 
XQuery

• Who are the Professors who teach something?

<rdf:Description rdf:id="sw">
<ex:courseName> Semantic Web </ex:courseName>

</rdf:Description>
<rdf:Description rdf:id="jja">
<ex:name> José Alferes </ex:name>
<rdf:type rdf:resource="uni:Professor"/>

</rdf:Description>
<rdf:Description rdf:about="#jja">
<ex:teaches rdf:resource="#sw"/>

</rdf:Description>



Querying RDF/XML

• What if we use XML query languages, and directly query 
the RDF/XML encoding?

- One can just view the RDF as an XML file, and use XPath, or 
XQuery

• Who are the Professors who teach something?

<rdf:Description rdf:id="sw" ex:courseName="Semantic Web"/>
<uni:Professor rdf:id="jja" ex:name = "José Alferes">
<ex:teaches rdf:resource="#sw"/>

</uni:Professor>



Querying RDF/XML

• This would be totally dependent on the syntactic 
representation

- (which, even worse, is not unique)

• It would defeat the whole purpose of RDF
- It would be totally useless!

• What if we use XML query languages, and directly 
query the RDF/XML encoding?

- One can just view the RDF as an XML file, and use XPath, or 
XQuery



SPARQL Query Language

• SPARQL - Sparql Protocol And Rdf Query Language 
(read as sparkle) provides facilities to:

- extract information in the form of URIs, blank nodes, plain and 
typed literals.

- extract RDF sub-graphs.
- construct new RDF graphs based on information in the queried 

graphs.

• RDF graphs can be obtained from several sources, 
including middleware capable of generating RDF data.

• SPARQL is based on matching of graph patterns, using 
variables in the patterns

- Results can come as binding of variables to RDF terms (URIs, 
literals or blank nodes) in a tabular form



Status of development

• First W3C recommendation in February 2008
• Extension to SPARQL 1.1 as of March 2013

- Query language
- Update language (insertion and deletion)
- HTTP operations to manage collections of graphs 
- Entailment regimes

- simple entailment is the default, but RDF entailment, RDFS entailment, 
and others to be seen, are possible

- Federation extensions (distributed queries)
- SPARQL Service description
- Query results in several formats: XML, JSON, CSV, …



Query forms

• SPARQL has four query forms:
- SELECT, returns variable bindings
- ASK, returns a boolean indicating whether a query pattern 

matches or not
- DESCRIBE, returns a RDF graph that describes the resources 

found
- CONSTRUCT, returns RDF graphs by substituting variables in a set 

of triple templates



Simple SELECT query

• The query consists of two parts, the SELECT clause and 
the WHERE clause. 

- The SELECT clause identifies the variables to appear in the query 
results.

- The WHERE specifies the graph pattern to match against the RDF 
data graph.

• The simplest form of graph patterns are triple patterns
- a triple pattern is an RDF triple with optional query variables in 

any place of the triple.

• Basic Graph Patterns (BGPs) are sets of triple patterns, in 
Turtle syntax



Our first SPARQL query

• Professor who teach ex:sw, and their names
• Syntax:

- Abbreviated URIs with PREFIX
- Variable names signalled by  ? (or by $)
- Literals are as in turtle
- ; and , can be used as in Turtle

PREFIX uni: <http://fct.unl.pt/concepts/> 
PREFIX  ex: <http://fct.unl.pt/example/> 
PREFIX rdf: <http://www.w3.org/1999/02/22-rdf-syntax-ns#> 
SELECT ?x ?name 
WHERE {?x ex:teaches ex:sw . 
       ?x rdf:type uni:Professor . 
       ?x ex:name ?name }



Our first SPARQL query

- Professors who teach ex:sw, and their names

• Determines the parts of the graph that match the BGP 
in the WHERE clause

• Returns the bindings of variables in the SELECT clause

… 
SELECT ?x ?name 
WHERE {?x ex:teaches ex:sw ; 
          rdf:type uni:Professor ; 
          ex:name ?name }

?x ?name
<http://fct.unl.pt/example/jja> "Jose Alferes"



Variables everywhere!

• Variables are allowed in subject, object and 
also in predicate positions of triples

- E.g. what are the relations between a guy called José 
Alferes and the object ex:sw?

… 
SELECT ?relation 
WHERE {?x ex:name   "Jose Alferes" . 
       ?x ?relation ex:sw }

?relation
<http://fct.unl.pt/example/teaches>



Blank nodes 

• Can be used in query patterns
- As in RDF, cannot be used in predicates
- Act like variables, but cannot be selected

- Remember the semantics of bnodes in RDF 
- Have arbitrary ID, and cannot be reused in different BGP

• Can be returned in results (if they are bnodes in the 
original graph)

- Placeholders for unknown elements
- With arbitrary IDs, with the scope limited to the result, that can 

be different from those in the input RDF
- But repeated occurrences in the result denote the same element

SELECT ?name 
WHERE {_:a ex:teaches ex:sw ; 
           rdf:type uni:Professor ; 
           ex:name ?name }



Datatypes

• Exact match for the datatypes is required
- E.g. {?x ex:p "test" .} does not match with  

ex:ex1 ex:p "test"^^xsd:string .

• But abbreviation for numbers are allowed
- E.g. { ?x ex:p 123 .} matches with     

ex:ex1 ex:p "123"^^xsd:integer . 

- The datatype is determined from the syntax 
- xsd:integer (e.g. 123)
- xsd:decimal (e.g. 123.45)
- xsd:double (e.g. 1.23e2)



Some syntactic simplifications

• Collections
- RDF collections can be written using the syntax 

( element1 element2 … )
- rdf:nil can be replaced by ()
- E.g. {(1 ?x) ex:p "w"} is the same as                    

{_:a rdf:first 1 ; rdf:rest _:b .         
_:b rdf:fist ?x; rdf:rest rdf:nil .      
_:a ex:p "w"}

• rdf:type
- Can be replaced by a. E.g. {?x a uni:Professor}
- Reads better…



RDF Datasets

• When compared with SQL, what is missing?
- The FROM clause

• No FROM clause is required in SPARQL
- A SPARQL query is executed against an (implicit) RDF Dataset 

which represents a collection of graphs
- RDF data stores hold multiple RDF graphs, and record 

information about each graph, allowing an application to make 
queries that involve information from more than one graph (a 
collection of graphs)

• But more (named) graphs can be specified



Graph provenance

• SPARQL can use the keywords FROM and FROM NAMED, to 
specify the default graph and named graphs, respectively.

• The FROM and FROM NAMED are followed by an URI.
• The graphs retrieved by FROM clauses are merged for 

constructing the default graph
• The FROM NAMED construct allows to include in the RDF 

dataset a named graph.
• The GRAPH construct can be used to obtain the provenance 

of results, or to query a particular named graph. Outside 
the GRAPH construct, the queries are always relative to the 
default graph.



Provenance example

SELECT ?graph ?name ?mbox 
FROM NAMED <http://ex.org/a> 
FROM NAMED <http://ex.org/b> 
WHERE { 
   GRAPH ?graph 
     { [ foaf:name ?name; foaf:mbox ?mbox ] } }

?graph ?name ?mbox

<http://ex.org/a> Jose <mailto:j@example.pt>

<http://ex.org/a> Maria <mailto:m@example.pt>

… … …

<http://ex.org/b> Ana <mailto:a@example.pt>

<http://ex.org/b> Jose <mailto:j@example.pt>

… … …



Provenance example

SELECT ?name ?mbox 
FROM NAMED <http://ex.org/a> 
FROM NAMED <http://ex.org/b> 
WHERE { 
   GRAPH <http://ex.org/a> 
     { [ foaf:name ?name; foaf:mbox ?mbox ] } 
   GRAPH <http://ex.org/b> 
     { [ foaf:name ?name; foaf:mbox ?mbox ] } 
 }

?name ?mbox

Jose <mailto:j@example.pt>



Multiple BGP and UNION

• BGP can be grouped, and several can be used.
• {} stand for the empty BGP, and matches any 

graph
• UNION between BGPs stand for the union 

(disjunction) of the BGPs.
- E.g. Who are the associate or full professors

SELECT ?x 
WHERE { 
   { ?x a uni:Professor } 
   UNION 
   { ?x a uni:Associate }  
 }



Unbound results

• UNION may give rise to unbound results.
- E.g. What are the names or nomes of courses?

SELECT ?x ?name ?nome 
WHERE { 
 ?x a uni:Course . 
 { ?x ex:name ?name } UNION { ?x ex:nome ?nome}  
}

?x ?name ?nome

ex:sw "Semantic Web"

ex:sw "Web Semântica"@pt

ex:sbd "Sistemas de BD"@pt



OPTIONAL patterns

• Another keyword that may return unbound 
results is OPTIONAL

• It allows for the specification of optional parts 
of a graph

- E.g. What are the nomes of courses, and names if 
they exist? 

SELECT ?x ?name ?nome 
WHERE { 
 ?x a uni:Course . ?x ex:nome ?nome 
 OPTIONAL {?x ex:name ?name} }

?x ?name ?nome
ex:sw "Semantic Web" "Web Semântica"@pt

ex:sbd "Sistemas de BD"@pt



Combination of UNION and OPTIONAL

• When used in combination UNION has higher 
precedence

- I.e. X UNION Y OPTIONAL Z is to be interpreted as  
{X UNION Y} OPTIONAL Z

- E.g. The names of either authors or editors of 
ex:swBook, and also the email when available?

SELECT ?name ?email 
WHERE { 
   ?x ex:name ?name . 
   {ex:swBook ex:author ?x } 
   UNION 
   {ex:swBook ex:edit ?x } 
   OPTIONAL { ?x ex:email ?email} }

{
}



Filters

• Even with complex graph patterns, some quite 
reasonable queries are not expressible:

- Who are the professors aged more than 50?
- Professors with a name started by "A"?

• FILTER allows us to specify conditions over 
variables, restricting the solutions to those that 
satisfy the condition

SELECT ?prof 
WHERE { 
   ?prof a uni:Professor; ex:age ?age .  
   FILTER ( ?age > 50 ) 
 }



Filter conditions

• Conditions evaluate to truth values (booleans)
• Usual comparison operator are allowed

- = and != for all RDF types
- >, <, <= and >= for numerical datatypes, dates, string and 

booleans

• Function can be used
- Arithmetic function (+, -, *, /) for numerical datatypes

- e.g. FILTER { ?x / ?y > ?z }
- XQuery and XPath functions
- Specific SPARQL functions



Specific functions

BOUND(A) returns true if A is a bound variable
ISURI(A) returns true if A is (bound to) a URI

ISBLANK(A) returns true if A a bnode
ISLITERAL(A) returns true if A a literal
SAMETERM(A,B) returns true if A and B are the same RDF term
REGEX(A,B) returns true if the string A matches the regular expression B
DATATYPE(A) returns the datatype of A

LANG(A) returns the language tag of A (or "" if none exists)
… …• Several more functions, especially in SPARQL 1.1

- Check the manual/specification



Combining conditions

• Conditions can be combined
- Conjunctively, by adding multiple filters
- Disjunctively, with UNION

• But boolean operators && ,|| and ! are also 
available

- E.g. Professors between 20 and 30, or not younger 
than 50?

SELECT ?prof 
WHERE { 
   ?prof a uni:Professor; ex:age ?age .  
   FILTER( (?age > 20 && ?age < 30 ) || 
            !(?age < 50) )  
 }



Solution modifiers

• The result of a SELECT query is a bag of answers (a table)
- But one can view it as a sequence of tuples, and consider their 

order
- Or as a set, without repeated elements

• Similarly to SQL, there can be an ORDER BY clause, and 
select only DISTINCT values

- By default the order is ascending
- For descending, use DESC
- String and numbers are sorted as usual
- URIs are sorted as strings
- unbound variables < bnodes < URIs < Literals

• One can also LIMIT the number of results, and define an 
OFFSET for the first result shown



Modifiers examples

• 10 oldest professors sorted by age, from oldest to younger:

SELECT ?prof ?age 
WHERE { ?prof a uni:Professor; ex:age ?age} 
ORDER DESC(?age) 
LIMIT 10

• Second oldest professor:
SELECT ?prof ?age 
WHERE { ?prof a uni:Professor; ex:age ?age} 
ORDER DESC(?age) 
LIMIT 1 OFFSET 2

• Ages of professors
SELECT DISTINCT ?age 
WHERE { [] a uni:Professor; ex:age ?age}



Aggregates

• SPARQL 1.1 includes aggregates and aggregate functions
- As in SQL, aggregates group solutions and compute values over 

the groups
- Groups are defined by a GROUP BY clause
- There can be filters over groups, with HAVING

• Available aggregate function:
- COUNT, MIN, MAX, SUM, AVG are as usual in SQL
- SAMPLE, picks one random value from the group
- GROUP_CONCAT, concatenate strings in the group



Aggregates examples

• How many courses does each lecturer who teach more than 2, teach

SELECT ?prof COUNT(?course) AS ?ncourses 
WHERE { ?prof ex:teaches ?course } 
GROUP BY ?prof 
HAVING ?ncourses > 2

• String with list of professors’ names by age
SELECT ?age GROUP_CONCAT(?name, separator=", ") 
WHERE { _:x a       uni:Professor; 
            ex:age  ?age; 
            ex:name ?name  
      } 
GROUP BY ?age

- Note the renaming of results with AS



Subqueries

• In SPARQL 1.1 one can have subqueries, whose results 
are conjunctively joined with the remainder BGP

- E.g. name of courses that are taught by exactly two lecturers

SELECT ?cname 
WHERE { 
        ?course ex:name ?cname . 
        { SELECT ?course COUNT(?lect) AS ?nl 
          WHERE { ?lect ex:teaches ?course } 
          GROUP BY ?course 
          HAVING ?nl = 2 
        } 
     }



Variable BINDing

• In SPARQL 1.1 variables can be bound to expressions 
with BIND and AS

SELECT ?name ?yearBirth 
WHERE { 
        [] a uni:Professor; ex:age ?age 
        BIND ((2019 - ?age) AS ?yearBirth) 
     }

SELECT ?name (2019 - ?age) AS ?yearBirth 
WHERE { [] a uni:Professor; ex:age ?age }

• Or



Property paths

• Another feature of SPARQL 1.1 is property paths
- Extend patterns from simple triples to paths, eventually with 

arbitrary length

• Property paths are built with regular expressions over 
predicates

- Alternative paths: ?s (exp1 | … | expn) ?o
- Inverse paths: ?s ^exp ?o (the same as ?o exp ?s)
- Negation of paths: ?s !exp ?o
- Sequence of paths: ?s exp1/…/expn ?o
- Paths with arbitrary length: ?s exp+ ?o, ?s exp* ?o, and  

optional presence     ?s exp? ?o
- Paths with given length limits: ?s exp{n} ?o,   

?s exp{n,} ?o, and  ?s exp{,n} ?o, ?s exp{n,m} ?o



Property paths example

• The ancestors of ex:jja:

SELECT ?ans 
WHERE { ex:jja (ex:mother|ex:father)+ ?ans }

• The classes to which ex:jja belongs:
SELECT ?class 
WHERE { ex:jja rdf:type/rdfs:subClassOf* ?class}

• The object to which ex:jja is related to, except for its type:
SELECT ?o 
WHERE { ex:jja !(rdf:type) ?o }

• The descendants of ex:jja:
SELECT ?desc 
WHERE { ex:jja (^ex:mother|^ex:father)+ ?desc }



Negation

• SPARQL 1.1 includes two forms of negation, besides the 
negation in filter conditions

- Test for patterns that do not exist
- Set difference between patterns

• The first with FILTER NOT EXISTS {BGP}
• The second with MINUS between BGPs



Negation examples

• Professors for which there is no age

SELECT ?prof 
WHERE { 
   ?prof a uni:Professor . 
   FILTER NOT EXISTS {?prof ex:age _:a} 
 }

• Can also be done with MINUS

SELECT ?prof 
WHERE { 
   ?prof a uni:Professor . 
   MINUS {?prof ex:age ?age} 
 }



Testing for existence

• If instead of wanting to know the results (variable 
bindings) one is only interested in knowing whether 
there are results, we can simply use ASK 

• Results of ASK are yes or no
• E.g. Is any lecturer of ex:sw called Jose Alferes?

ASK 
WHERE { 
   ?prof ex:name "Jose Alferes"; 
         ex:teaches ex:sw 
 }



Returning graphs

• SELECT takes a (set of) RDF graph(s), and returns a table
- In this sense, it is not algebraic

• SPARQL includes two commands that are algebraic
- DESCRIBE: given a set of URIs returns the graph with all edges 

departing from that URI
- CONSTRUCT: Similar to SELECT, but returning the result in 

the form of an RDF graph



Describe

• If given just a URI, returns all the direct data about the 
resource. E.g.
- DESCRIBE <http://dbpedia.org/resource/Portugal> 

• It can also be used to describe the result of a query that 
returns just one variable, which is always bound to URIs

- E.g. The data about those that teach ex:sw

DESCRIBE ?prof 
WHERE { ?prof ex:teaches ex:sw }



Construct

• CONSTRUCT constructs an RDF graph from a given 
graph template, using the variables of a query

• E.g. graph with name (as nome) and year of birth of 
lecturers of ex:sw
CONSTRUCT { ?prof my_ex:nome ?name; 
                  my_ex:birth ?year }  
WHERE { ?prof ex:teaches ex:sw; 
              ex:age ?age; ex:name ?name 
        BIND ((2019-?age) AS ?year)}

• E.g. all data from lecturers of ex:sw
CONSTRUCT { ?prof ?prop ?obj }  
WHERE { ?prof ex:teaches ex:sw; ?prop ?obj }



SPARQL Updates

• SPARQL update make it possible to
- insert and delete contents to graph stores
- manage the lifecycle of graph stores
- Somehow, similar to DML of SQL

• INSERT and DELETE insert or delete a given 
set of triple into a store

- Like in CONSTRUCT
- Delete cannot be applied to bnodes

INSERT { ?person ex:birth ?year }  
DELETE { ?person ex:age ?age} 
WHERE { ?person a ex:Person; ex:age ?age . 
        BIND ((2019-?age) AS ?year)}



Managing graph stores

• There are extra constructs to manage RDF stores
- LOAD <URI1> [INTO GRAPH <URI2>] loads all the triples in 

URI1 to the store [in URI2]
- CLEAR [GRAPH <URI>] deletes all the triples in the store [in 

URI]
- COPY GRAPH <URI1> TO <URI2> copies and overwrites
- MOVE GRAPH <URI1> TO <URI2> moves and overwrites
- CREATE GRAPH <URI>
- DROP GRAPH <URI>



Summary and follow-up

• SPARQL is a very powerful query language for RDF 
graphs

- More expressive than RDFS
- With some constructs that resemble SQL
- It allows for effective querying of RDF data in the Semantic Web

• But what exactly is the meaning of a SPARQL query?
- We’ve seen that informally, but we should look for the formal 

(exact) semantics of SPARQL - via SPARQL algebra
- And how can one implement a SPARQL endpoint?

- We must have a look at the SPARQL protocol



SPARQL Semantics
Meaning of Queries in the Semantic Web



Meaning of queries

• What is the exact meaning of a SPARQL query?
- Up to now we’ve seen it informally
- But to really use it, and to implement it, "informally" is not 

enough!

• How to define the meaning of a query language?
- Query Entailment (as seen, e.g., in RDF(S))

- Data described/translated into some formal logical language
- Queries as possible consequences (of a given format)
- Results as logical entailment

- Query Algebra (as, e.g., in SQL)
- Queries as algebraic expressions that compute the result, given the data 

as input.



SPARQL Algebra
• Unlike SQL, SPARQL is not directly an algebraic 

language
- Each SQL query operates on relations, and returns a relation
- SPARQL queries operate on RDF graphs and returns solutions

- The CONSTRUCT doesn’t help here (in the middle we have relations)

• So, first we need to transform SPARQL queries into some 
algebra expression

- The semantics is provided by evaluation of such transformed 
expressions



Transformation general idea

• First take care of syntactic issues (and expand URIs)
• Take a Bgp(.) operator that given a pattern triple, returns 

a relation with assignment of variables
- Apply it to each individual pattern triple in the query

• Have algebraic operator on relations for inner joins , 
outer joins, unions, filters, etc

- translate the query by appropriate use of these operators

SELECT ?x ?name 
WHERE {?x ex:teaches ex:sw ; ex:age ?age. 
       ?x rdf:type uni:Professor . 
       OPTIONAL {?x ex:name ?name} 
       FILTER (?age < 50) }



Transformation by example

• First take care of syntactic details (sorry but I won’t expand rdf)
{?x <http://fct.unl.pt/example/teaches> 
    <http://fct.unl.pt/example/sw> . 
 ?x <http://fct.unl.pt/example/age> ?age. 
 ?x rdf:type <http://fct.unl.pt/concepts/Professor> . 
 OPTIONAL {?x <http://fct.unl.pt/example/name> ?name} 
 FILTER (?age < 50) }

• Then apply Bgp(.) to triples (sorry but, for readability, I’ll use prefixes 
anyways)

{Bgp(?x ex:teaches ex:sw) 
 Bgp(?x ex:age ?age) 
 Bgp(?x rdf:type uni:Professor) 
 OPTIONAL {Bgp(?x ex:name ?name)} 
 FILTER (?age < 50) }



Transformation by example

• Apply Join(.) for consecutive (groups of) Bgp
{Join( Bgp(?x ex:teaches ex:sw), 
       Join(Bgp(?x ex:age ?age),Bgp(?x rdf:type uni:Professor)) 
 OPTIONAL {Bgp(?x ex:name ?name)} 
 FILTER (?age < 50) }

• Apply Leftjoin(.) for OPTIONALs
{LeftJoin( 
   Join( Bgp(?x ex:teaches ex:sw), 
       Join(Bgp(?x ex:age ?age),Bgp(?x rdf:type uni:Professor)), 
   Bgp(?x ex:name ?name), 
   true) 
 FILTER (?age < 50) }



Transformation by example

• Apply Filter(.) for conditions
{Filter(?age < 50, 
 LeftJoin( 
   Join( Bgp(?x ex:teaches ex:sw), 
       Join(Bgp(?x ex:age ?age),Bgp(?x rdf:type uni:Professor)), 
   Bgp(?x ex:name ?name)) 
 )}

• In the end project the desired variables
Project((?x,?name), 
 Filter(?age < 50, 
   LeftJoin( 
   Join( Bgp(?x ex:teaches ex:sw), 
       Join(Bgp(?x ex:age ?age),Bgp(?x rdf:type uni:Professor)), 
   Bgp(?x ex:name ?name))



Remainder of transformation

• The remainder of the transformation is easy to grasp
- Just do similarly for UNIONs (or MINUS)
- Formally the transformation is defined by a function translate that 

given a SPARQL query returns the SPARQL algebra expression
- translate  recursively applies over the structure of the SPARQL query

• You can check in the SPARQL Algebra specification at 
W3C

- And test and validate in
- http://sparql.org/query- validator.html 



SPARQL operators

• Bgp(P)
- match/evaluate P

• Join(M1,M2)
- conjunctive join of the solution M1 with solutions M2

• Union(M1,M2)
- union of the solutions M1 with solutions M2

• LeftJoin(M1,M2)
- outer join of M1 and M2

• Filter(M,C)
- select solutions in M that satisfy condition C

• Minus(M1,M2)
- The solutions of M1 which are not compatible with M2



SPARQL evaluation

• Only Bgp(.) operates over triple patterns
• All other operators operate over solutions
• A solution is a partial function that:

- given a (relevant) variable
- returns a URI, a blank node or a Literal

• A result is a sequence (or list) of solutions



Solutions of Bgp(.)

• A partial function μ is a solution for Bgp(P) over a graph 
G iff.

- the domain of μ is exactly the set of variable in P
- The exists an assignment σ of bnodes in P to URIs, bnodes or 

literals, such that μ(σ(P)) is a subgraph of G

• The result of evaluating Bgp(P) over graph G, written 
⟦Bgp(P)⟧G, is the multiset (i.e. a set, possibly with 
repetitions) of all solutions for Bgp(P) over G

- We denote a multiset S by a set of pairs (n,E), where (n,E) denotes 
that has n occurrence of E in S (in this case we say M(E) = n)

- E.g. {(1,a),(2,b)} represents the multiset {a,b,b}, where M(a) = 1 
and M(b) = 2

• We start by not considering the multiplicity of solutions



Bpg(.) example

• Bgp(?x ex:teaches _:y . _:y ex:hasTopic ?t) 
has 2 solutions

- one assigning ex:jja to ?x and "SPARQL" to ?t
- another, ex:jja to ?x and "RDF" to ?t

• Bgp(?x ex:teaches _:y . _:y ex:hasTopic _:z) 
has 1 solution with multiplicity 2

- assigning ex:jja to ?x
- but with different replacements for _:y and _:z

ex:jja ex:teaches [ex:hasTopic "SPARQL"] . 
ex:jja ex:teaches [ex:hasTopics "RDF"] .



Union of solutions

• Two solutions are compatible if for a same variable they 
both assign a same value

- E.g. x ↦ a, y ↦ b is not compatible with x ↦ c

• The union of 2 compatible solutions μ1 and μ2 is μ1 ∪ μ2 
such that:

- μ1 ∪ μ2(x) = μ1(x) if x ∈ dom(μ1)
- μ1 ∪ μ2(x) = μ2(x) otherwise
- I.e. the union of matching assignments



Operations on sets of solutions 

• S1 ⨝ S2 ={μ1 ∪ μ2 | μ1 ∈ S1, μ2 ∈ S2, and μ1 is compatible with μ2}

• S1 ∪ S2 ={μ | μ ∈ S1 or μ2 ∈ S2}
• S1 ⟕ S2 = (S1 ⨝ S2) ∪ (S1 \ S2), where  

 
S1 \ S2 ={μ1 | μ1 ∈ S1 and ¬∃μ2 ∈ S2 | μ1 and μ2 are compatible} 
 
i.e. 
 
S1 \ S2 ={μ1 | μ1 ∈ S1 and ∀μ2 ∈ S2 | μ1 and μ2 are incompatible}

• S1 - S2 ={μ1 | μ1 ∈ S1 and ∀μ2 ∈ S2, μ1 and μ2 are incompatible or 
dom(μ1) ∩ dom(μ2) = ∅}



Negation

• It was introduced in SPARQL 1.1 and provides two 
mechanisms:

- Filtering results checking for the absence of a graph pattern  
(NOT EXISTS)

- Removal of solutions with respect to other pattern  
(MINUS)

• The semantics of SPARQL has some subtleties which 
results in differences with respect to SQL.



EXISTS and MINUS

• The NOT EXISTS filter expression tests whether a graph 
pattern does not match the dataset, given the values of 
variables in the group graph pattern in which the filter 
occurs. It does not generate any additional bindings.

• EXISTS tests whether the pattern can be found in the 
data; it does not generate any additional bindings.

• MINUS evaluates both its arguments, then calculates 
solutions in the left-hand side that are not compatible 
with the solutions on the right-hand side.



Evaluation of expression

• ⟦Join(M1,M2)⟧G = ⟦M1⟧G ⨝ ⟦M2⟧G

• ⟦Union(M1,M2)⟧G = ⟦M1⟧G ∪ ⟦M2⟧G

• ⟦LeftJoin(M1,M2)⟧G = ⟦M1⟧G ⟕ ⟦M2⟧G

• ⟦Minus(M1,M2)⟧G = ⟦M1⟧G - ⟦M2⟧G

• ⟦Filter(M,C)⟧G = {μ ∈ ⟦M⟧G | μ ⊨ C}
- where μ ⊨ C means that μ makes condition C true.



Example queries
Data:

[ :name "Paul" ; :phone "777-3426" ] . 
[ :name "John" ; :email "john@acd.edu" ] . 
[ :name "George" ; :webPage <www.george.edu> ] . 

     [ :name "Ringo" ; :email "ringo@acd.edu" ; 
        :webPage <www.starr.edu> ; :phone "888-4537" ] .
Patterns:

P1 = Join(Bgp( ?A,:email,?E) , Bgp(?A,:webPage,?W) ) 
P2 = LeftJoin( Bgp(?A,:email,?E), Bgp(?A,:webPage,?W) )
P3 = LeftJoin( 

                   LeftJoin( Bgp(?A,:name,?N), Bgp(?A,:email,?E) ),  
                   Bgp(?A,:webPage,?W) 
              )
 

64



Example queries

P4=LeftJoin( Bgp(?A,:name,?N),  
                      LeftJoin(Bgp(?A,:email,?E),Bgp(?A,:webPage,?W)) 
                     ) 

P5 =  Join( Bgp(?A,:name,?N),  
                  Union(Bgp(?A,:email,?E), Bgp (?A,:webPage,?W)) 
                 )

P6 = Filter(Bgp(?A,:name,?N) LeftJoin Bgp(?A,:phone,?P) , 
                   ?N = "Paul")

65



Multiplicity of solutions

• We have not considered the multiplicity of solutions (i.e. 
number of repeated solutions)

• For example, in the Union:
- Let μ be a member of ⟦Union(M1,M2)⟧G 

- Let Mi(μ) be the multiplicity of μ at ⟦Mi⟧G
- (or 0 if μ ∉ ⟦Mi⟧G)

- M(μ) in ⟦Union(M1,M2)⟧G is M1(μ) + M2(μ)

• For the remainder operators you can check the 
specification



Evaluation of SELECT

• The evaluation of a SPARQL query        SELECT  W 
WHERE P over a graph G is            {μ |W | μ ∈ ⟦P⟧G}

- μ |W denotes the restriction of solutions in μ to variables in W

• Complexity results for the problem "is μ a solution of 
query P over graph G?"

- If P only contains Join and Filter, the evaluation can be done in 
polynomial time

- If P contains Join and Union, then the evaluation is NP-Complete
- If P contains LeftJoin, then the evaluation is PSPACE-complete



Solution Modifiers

• The semantics of solution modifiers is given by 
additional operators

- ToList(M)
- Given a multiset M turns it into a list

- OrderBy(L,Comp)
- Sort the list L with the order specified in Comp
- Together with ToList(.) is used for ORDER BY

- Distinct(M)
- Removes the duplicates in M (turns multiset M into a set)
- To be used for DISTINCT

- Project(M,Vars)
- projects the variables in Vars in multiset M

- Slice(L,p,l)
- Cuts the solutions in list L, to a list of length l, starting from 

position p



Entailment regimes

• The definition of Bgp(.) only accounts for simple 
entailment

- Subgraph matching
- Only Bgp(.) generates solutions

• To answer queries according to other, stronger, 
semantics, instead of subgraph matching, something else 
is needed (Entailment Regime)

- E.g. for RDFS (and other, such as OWL, later)

• Very naive solution:
- First close the RDFS graph, and then use simple entailment
- Doesn’t work in practice!

• We will come back to this after studying OWL.



SPARQL Protocol
Querying the Web, in practice



SPARQL Protocol

• Besides the language and its semantics, SPARQL comes 
with a protocol, and service descriptions, to put it to 
work

• It specifies how queries can be sent to endpoints in the 
Web, and how results (and errors) are returned

• Query:
- GET: Query is part of the URL

- http://server…/endpoint?query=…

- POST: Query is in the body of the HTTP request, e.g. via an 
HTML form

• Update
- POST with content-type application/sparql update or via HTML 

form



Service Descriptions

• Define method and vocabulary for describing SPARQL 
endpoints

• Client/User can request information about the SPARQL 
service:

- supported extension functions
- used data set
- supported entailment regimes
- …

• See full specification at
- http://www.w3.org/TR/sparql11-service-description/



HTTP trace example

• Request GET /sparql/ HTTP/1.1 
Host: www.example 
Accept: text/turtle

• Response
HTTP/1.1 200 OK 
Date: Fri, 09 Oct 2009 17:31:12 GMT 
Server: Apache/1.3.29 (Unix) PHP/4.3.4 DAV/1.0.3 
Connection: close 
Content-Type: text/turtle 
@prefix sd: <http://www.w3.org/ns/sparql-service-description#> . 
… 
[] a sd:Service ; 
    sd:endpoint <http://www.example/sparql/> ; 
    sd:supportedLanguage sd:SPARQL11Query ; 
    sd:resultFormat format:RDF_XML, <http://www.w3.org/ns/formats/Turtle> ; 
    sd:feature sd:DereferencesURIs ; 
    sd:defaultEntailmentRegime ent:RDFS ; 
    sd:defaultDataset [a sd:Dataset ; sd:defaultGraph 
                                     [a sd:Graph ; void:triples 100] ; 
     sd:namedGraph [a sd:NamedGraph ; 
            sd:name <http://www.example/named-graph> ; 
            sd:entailmentRegime ent:OWL-RDF-Based ; 
            sd:supportedEntailmentProfile prof:RL ; 
            sd:graph [a sd:Graph ; void:triples 2000] 
…



Federated queries

• Other SPARQL endpoints can be queried inside a 
SPARQL query with SERVICE construct. E.g.

PREFIX foaf:   <http://xmlns.com/foaf/0.1/> 
SELECT ?person ?interest ?known 
WHERE 
{ 
  SERVICE <http://people.example.org/sparql>  
    { ?person foaf:name ?name .   
    OPTIONAL {  
      ?person foaf:interest ?interest . 
      SERVICE <http://people2.example.org/sparql>  
        { ?person foaf:knows ?known . } } 
  }     
}



SPARQL in Jena

• SPARQL server with Jena Fuseki
• SPARQL functionality in Jena

- http://jena.apache.org/documentation/javadoc/arq

• Main classes in com.hp.hpl.jena.query
- Query in SPARQL
- QueryFactory for creating queries
- QueryExecution for the execution state of a query
- QueryExecutionFactory for creating query executions
- ResultSet for results of a SELECT query



SPARQL example in JENA



Remote SPARQL with Jena

• Jena can also be used to send SPARQL queries 
to remote endpoints. E.g.


