
RDF
Resource Description Framework

A bit of history

• RDF was created by the W3C in 1999 as a
format for structuring metadata about web
pages (title, author, modification date, …)

• It has been designed to allow information to
be exchanged without loss of meaning

• It became a general data format/model for
data in general (rather than only metadata)

- Proposed in 2001 as the model for data exchange in
the Semantic Web

- Nowadays there are quite big data stores in RDF
- The today’s data model of Semantic Technologies!

Why not XML?

• XML provides a uniform framework for
interchange of data (and metadata)

• But does not provide any means of talking
about the semantics (meaning) of data. E.g.:

- there is no intended meaning associated with the
nesting of tags

- There is no (processable) intended meaning of each
tag

• It is up to each application to interpret the
nesting.

Nesting of tags in XML
• Consider

<course name="Data Modelling">
 <lecturer>Carlos Damásio</lecturer>
 </course>

• versus
<lecturer name="Carlos Damásio">

 <teaches>Data Modelling</teaches>
 </lecturer>

• The nesting are opposite, but the meaning is
the same.

- There should be a way of attributing meaning
without compromising to a particular nesting

• How would it look in a relational database?

Basic Ideas of RDF
• Represent the meaning independently of the

syntax
• Basic building block: object-attribute-value

triple
- It is called a statement
- In the example, object is Carlos Damásio, attribute is

lectures, value is Data Modelling

• Fundamental concepts in RDF are:
- Resources (like the object and value above)
- Properties (like the attribute above)
- Statements (the triple above)

RDF syntax
• With these basic ideas, an RDF dataset is a labeled

directed graph (i.e. a labeled property graph)
- Modelling data as a graph, rather than modelling as a set of

relations (in databases), or as a tree (in XML)

• There are several syntaxes for writing such a graph:
- N3 (Notation 3) comprehensive formalism
- N-Triples: fraction of N3
- Turtle (Terse RDF Triple Language)

• A standard encoding of RDF into XML and JSON
have also been defined

- Facilitates interoperability of tools
- RDF should not be confused with their syntactical

representation!

First RDF example (in Turtle)

Resources

• A resource is just any "thing", an object we
want to refer to

- E.g. an author, a book, a place, a person, a hotel, etc

• In RDF, every resource has a unique identifier
- Unique identifiers are crucial to disambiguate

resources!
- On the Web we already have unique identifiers, and

RDF just uses them

• URIs/IRIs will be used as identifiers

URLs, URIs, and IRIs
• URL (Uniform Resource Locator)

- Just like a web address (e.g. http://www.fct.unl.pt)
- Use to locate a resource in the Web

• URI (Uniform Resource Identifier)
- Looks like a URL, but does not need to identify a

Web resource (it can be a person, a book, etc)

• IRI (Internationalized Resource Identifier)
- Like URI, but using Unicode (UTF) instead of ASCII

- E.g. http://
- IRIs can be translated to URIs

- I’ll spare you the details of such a conversion.

URI syntax

• scheme: type of URI, e.g. http, ftp, mailto, …
• authority: typically a domain name, e.g.

fct.unl.pt
• path: just like a directory’s path
• query: optional, usually for parameters e.g. in

web services
• fragment: optional, used to refer to a part of

a document

scheme:[//authority]path[?query][#fragment]

Which URIs to use?

• According to Linked Data principles always
use http addresses

• How to make real world objects dereference-
able?

- Associate to URLs
- Hash URIs or 303 URIs (See other)

• The techniques depend on the behaviour of
HTML servers, and are fully explained in
Linked Data: Evolving the Web into a Global Data
Space (http://linkeddatabook.com)

http://linkeddatabook.com

Hash URI request
• Suppose we want to obtain the university

definition of Teacher and Student
- http://www.unl.pt/vocabulary/teaching#Teacher
- http://www.unl.pt/vocabulary/teaching#Student

Hash URI request
• Suppose we want to obtain the university

definition of Teacher and Student
- http://www.unl.pt/vocabulary/teaching#Teacher
- http://www.unl.pt/vocabulary/teaching#Student

Properties

• Properties describe relations between
resources

- E.g. "written by", "has age", "has title", etc.

• Each property is itself also a resource
- So, properties are also identified by URIs

• Advantages of using identifying URIs:
- Α global, worldwide, unique naming scheme
- Reduces the homonym problem of distributed data

representation
- (Basically, with URIs everything is guaranteed to be

uniquely identified, by a key)

Statements

• Statements assert properties of resources
- Relate resources via properties

• In RDF, a statement is an object-attribute-value
triple

- It consists of a resource, a property, and a value

• They can be seen as binary predicates:
attribute(object,value)

• Values can be resources or literals
- Literals are just atomic values (e.g. strings), that don’t

need to have a URI.

Representation of statements
• A statement can be viewed as:

- A triple (Object, Property, Value)
or (Subject,Predicate,Object)

- An arc connecting two nodes in a graph
- A piece of XML code, representing the triple

• Accordingly, an RDF document can be viewed as:
- A set of triples
- A graph (semantic net)

• Do not confuse with its serialisation, namely:
- An XML document with the triples represented

according to a given predefined syntax
- A JSON-LD document
- N-Triples, N3 or Turtle formats

Not all arcs are valid

• In an RDF graph, RDF triples:
- Subject must be: URI/IRI or blank node
- Predicate must be: URI/IRI
- Object can be anything (URI/IRI, blank node, literal)

• Some extensions only limit predicates:
- Subject can be anything
- Predicate must be: URI/IRI or blank node
- Object can be anything

Representing triples in a graph

• This piece of a graph is representing the triple:
- (centria.di.fct.unl.pt/~jja, site-owner, "José Alferes")
- Or the predicate

 site-owner(centria.di.fct.unl.pt/~jja, "José Alferes")
(these things are not proper URIs, but for the sake of the example…)

• An RDF document can be seen as a directed
graph with labeled nodes and arcs

- from the resource (the subject of the statement)
- to the value (the object of the statement)

• Known in AI as a semantic net

centria.di.fct.unl.pt/~jja site-owner José Alferes

http://centria.di.fct.unl.pt/~jja
http://centria.di.fct.unl.pt/~jja

An example of RDF graph

• The owner of the site …~jja is someone named José
Alferes who has phone 10748 and is a friend of someone
called João Leite, who owns …/bd web page; José
Alferes uses this web page

centria.di.fct.unl.pt/~jja site-owner

ssdi.di.fct.unl.pt/bdsite-owner

uses

has-phone

is-friend-of

10748

José Alferes

João Leite

full-name

full-name

RDF as a data model

• A schema-less data model
- Based on a graph
- With unambiguous identifiers
- With named relations between pair of resources

• The graph structure trivialises merging data
with shared identifiers

• Triples act as least common identifier for
expressing data

• Eases "navigation" through data in different
locations

A bit of (Turtle) syntax

• Turtle was defined to be a simple syntax for
RDF, and is standardised by W3C since
February 2014 (see http://www.w3.org/TR/turtle/)

- Triples are directed lists: Subject Property Object
- URI are in <angle brackets>
- End with "."
- White spaces are ignored
- Prefixes (simple string concatenation)
- Grouping of triples with the same subject with ;
- Grouping of triples with the same subject and

property with ,

Turtle example

Literals
• Represent data values

- Encoded as strings but can be interpreted by means of
datatypes

- Literals without any type are treated as strings
- A literal without a type is called a plain literal, and may

have a language tag

• Datatypes are borrowed from XML Schema (XSD)
- RDF does not require an implementation of datatypes,

though systems usually implement most of XSD datatypes

• Some examples
- Typed literals

- "Bay State"^^xsd:string or "604109"^^xsd:integer
- Plain literals

- "Germany" or "Deutschland"@de

XSD datatypes

Type definition
• Datatypes can be defined by the user, as in

XML
- New derived simple types are derived by restriction
- Complex types based on enumerations, unions, and

lists are also possible

• More, in other courses (e.g. BD, CTXML)

<xsd:schema …>
<xsd:simpleType name ="humanAge">
 <xsd:restriction base="integer">
 <xsd:minInclusive value="0"/>
 <xsd:maxInclusive value="150"/>
 </xsd:restriction>
</xsd:simpleType>
…

</xsd:schema>

N-ary predicates
• RDF statements can be viewed as facts for binary

predicates
• And what about predicates with more than 2

arguments?
- Example: John has done course1 with grade 12 and course2

with grade 15
@prefix ex:<http://example.org/>
ex:John ex:hasCourse "course1 with 12",
 "course2 with 15".

N-ary predicates
• RDF statements can be viewed as facts for binary

predicates
• And what about predicates with more than 2

arguments?
- Example: John has done course1 with grade 12 and course2

with grade 15
@prefix ex:<http://example.org/>
ex:John ex:hasCourse "course1";
 ex:withGrade "12";
 ex:hasCourse "course2";
 ex:withGrade "15".

N-ary predicates
• Solution: use auxiliary nodes!
@prefix ex:<http://example.org/>
ex:John ex:hasCourse ex:onecourse;
 ex:hasCourse ex:anothercourse.
ex:onecourse ex:course "course1";

 ex:withGrade "12".
ex:anothercourse ex:course "course2";

 ex:withGrade "15".

• These auxiliary nodes are unique, and only
used locally

• So, why do they have to have a unique global
identifier?

Blank nodes
• bnodes are used for resources that do not need

to be universally identified
• Just like existentially quantified variable

@prefix ex:<http://example.org/>
ex:John ex:hasCourse _:id1;
 ex:hasCourse _:id2.
_:id1 ex:course "course1";

ex:withGrade "12".
_:id2 ex:course "course1";

ex:withGrade "12".

@prefix ex:<http://example.org/>
ex:John ex:hasCourse
 [ex:course "course1";ex:withGrade "12"],
 [ex:course "course2";ex:withGrade "15"].

Blank nodes
@prefix ex:<http://example.org/>
ex:John ex:hasCourse
 [ex:course "course1";ex:withGrade "12"],
 [ex:course "course2";ex:withGrade "15"].

http://example.org/
John

12

15

course1

course2

http://exam
ple.org/hasC

ourse

http://example.org/hasCourse

http://example.org/course

http
://

exa
mple.o

rg/co
urs

e

http://example.org/withGrade

http://example.org/withGrade

Containers

• Use when an argument has a set (or sequence)
of values

- E.g. authors of a book, lectures of a course, …

• Closed containers or Collection
- no further elements can be added

• Open containers
- Lists (order matters) - rdf:Seq
- Bags (order doesn’t matter) - rdf:Bag
- Alternatives - rdf:Alt
- Why not sets?

Collections

@prefix ex:<http://example.org/>
ex:SemanticWebBook ex:authors
 (ex:Hitzler ex:Kroetzsch ex:Rudolph).

• Use blank nodes

http://example.org/SemanticWebBook

http://example.org/Hitzler

http://example.org/
Kroetzsch

http://example.org/Rudolph
http://exam

ple.org/authors

Open containers
• Use blank nodes and rdf:type
• For lists use rdf:first, rdf:rest, and

rdf:nil

• For bags use rdf:li
• For alternatives use rdf:_1, rdf:_2, etc
@prefix cb:<http://clubes.pt/>
@prefix rdf:<http://www.w3.org/1999/02/22-
rdf-syntax-ns#>
cb:podium _:id1.
_:id1 rdf:type rdf:Seq;
 rdf:first "Benfica";rdf:rest _:id2.
_:id2 rdf:type rdf:Seq;
 rdf:first "Porto"; rdf:rest _:id3.
_:id3 rdf:type rdf:Seq;
 rdf:first "Sporting";rdf:rest rdf:nil.

Reification

• In RDF it is possible to make statements about
statements. E.g.

- Carlos believes that José Alferes is the creator of
http://ssdi.di.fct.unl.pt/rsw

- Such statements can be used to describe belief or
trust in other statements

• They amount to considering statements
themselves as resources that can then be
referenced

• For that, one needs to assign a unique
identifier to each statement

Reifying statements
• Introduce an auxiliary node (e.g. a bnode)
• Relate to it each of the 3 parts of the original

statement through rdf:subject,
rdf:predicate and rdf:object

• Reified statements rdf:type is
rdf:Statement

ex:Carlos ex:believes
 [rdf:type rdf:Statement;
 rdf:subject ex:JoseAlferes;
 rdf:predicate ex:creator;
 rdf:object <http://ssdi.di.fct.unl.pt/rsw>].

Critical view of reification

• The mechanism is quite powerful
- But it appears misplaced in a simple language like

RDF

• Making statements about statements
introduces a level of complexity that is usually
not necessary for a basic layer of the Semantic
Web

• It may make sense in higher layers, providing
richer representation capabilities

- It is confusing, and complex, to have it in the basic
layer of RDF

RDF in practice

• Today there are lots of RDF tools
- We will try some in the labs

• There are libraries for plenty of programming
languages

• Commercial systems like Oracle support it
• It is the basis for other data formats. E.g.:

- RSS feeds (original name was RDF Site Summary)
- Adobe XMP (eXtensible Metadata Platform)
- SVG (Scalable Vector Graphics)

RDF in practice
• There are freely available systems to work with

large datasets (RDF- or Triple-Stores)
• And there are quite large datasets!

- E.g. bio2rdf has 5 billion triples, dbpedia has 3 billion,
geonames has 100 million, dblp has 88 millions

• linkeddata.org is quite a large "database" to play
with! In 2011 it already looked like:

RDF Schema
Defining schemas for RDF data

Why a schema language

• Like in databases, to understand the data one
needs some formalisation of what it is about

- what classes, with each types of attributes, with what
relationship between classes, etc

- this is especially important when the data is highly
distributed, and provided in a collaborative way

• RDF provides a data model to state
propositions about individual resources

• In a schema language we need to state
propositions about generic sets of individuals

- and also logical interdependencies between them

RDF Schema (RDFS)
- RDF is a universal language that lets users describe

resources
- It does not assume any meaning for the vocabulary used
- It does not assume, nor does it define semantics of any

particular application domain

• RDFS allows for specifying terminological
knowledge, that RDF data can refer to

- It is a language for describing (simple) semantics of
arbitrary RDF

- Uses RDF itself (with dedicated vocabulary)

• RDFS is part of RDF’s W3C recommendation
- xmlns:rdfs = "http://www.w3.org/200/01/rdf-schema#"

- Notice: The relation between RDF Schema and RDF is
not the same as that between XML Schema and XML

RDFS Basic Ideas
• Schemas are specified with:

- Classes and Properties
- Class (and Property) hierarchies and inheritance
- Property Restriction (e.g. stating that authors of a

book must be persons)

• Classes and Instances
- Instances (defined in RDF) refer to concrete

individual objects (e.g. me, this book)
- Classes denote sets of individuals sharing some

properties (e.g. persons, books)
- In RDFS classes are also seen as objects (with URIs)
- The relationship between instances and classes is

made via special attribute rdf:type of the instance
- amalgamating data and meta-data

First Schema example

• The last statement characterises José Alferes as
an instance of class professor.

- An individual can belong to more than one class. E.g.

ex:jja ex:name "José Alferes";
 ex:teaches ex:sw;
 rdf:type uni:Professor.

ex:jja rdf:type rel:Father.

ex:jja José
Alferesex:sw

uni:Professor

ex:teaches ex:name

rdf:type
rel:Father

rdf:type

The class of all classes
• In the example ex:Professor and ex:Father are

objects whose type is rdfs:Class
• rdfs:Class is also of type rdfs:Class (the class

of all classes)
- The triple rdfs:Class rdf:type rdfs:Class virtually

belongs to all datasets (already some kind of semantics)

ex:jja José
Alferesex:sw

uni:Professorrel:Father

ex:teaches ex:name

rdf:type

rdf:type

rdfs:Class
rdf:type

rdf:type
rdf:type

Class Hierarchies
• Suppose we are searching for all Academic

Staff
- jja should be considered

• This can be done by having a general
statement, saying that all professors are
academic staff (with rdfs:subClassOf)

• rdfs:subClassOf is
- a property
- it is reflexive and transitive
- can be used to enforce that two classes have the same

extension (i.e. the same set of individuals)
- with A rdfs:subClassOf B and B rdfs:subClassOf A

Simple taxonomy

ex:jja José
Alferesex:sw

uni:Professorrel:Father

ex:teaches ex:name

rdf:type
rdf:type

uni:Associate uni:Assistant

uni:AcademicSta
ff

uni:Members

uni:Administrativeuni:Student

rdfs:subClassOf

rdfs:subClassOf

rdf:type is like ∈
rdfs:subClassOf is like ⊆

Properties
• Properties specify in which ways two

resources are related
- usually appear in the predicate position of triples
- mathematically represented as binary relations (sets

of pairs)
- their rdf:type is rdf:Property

• Hierarchical relationships may also be defined
for properties

- E.g., "teaches" is a sub-property of "isInvolvedIn"
- If a professor P teaches course C, then P is involved in C

• P rdfs:subPropertyOf Q, if Q(x,y) is true
whenever P(x,y) is true

Property restriction
• Defined by rdfs:domain and rdfs:range
• Restrict the kind of resources that can be

related via the property
- E.g. a property "teaches" only makes sense if it is

relating an academic staff to a course
- It can also be used to declare datatypes for literals

ex:teaches rdfs:domain uni:AcademicStaff;
 rdfs:range uni:Course.
ex:name rdf:range xsd:string.

Property restriction

• Property restriction are interpreted globally
and conjunctively

- E.g.

- entails that ex:cd is both a uni:Professor and a
uni:Associate. In this case (and in general) this is
not what is wanted!

- When designing the schema, choose the most general
class for domain and range!

ex:teaches rdfs:domain uni:Professor;
 rdfs:domain uni:Associate.
ex:cd rdf:teaches ex:sbd.

An example schema

uni:Associate uni:Assistant

uni:AcademicStaff

uni:Members

uni:Administrativeuni:Student

uni:Professor

uni:Course

Schema
Instance

rdfs:d
omain

ex:isInvolvedIn

rdfs:domain

rd
fs:

ra
ng

e

xsd:string

rdfs:range
rdfs:range

rdfs:subPropertyOf

rdf:type

rdfs:subClassOf

ex:jj
a

Jose
Alferes

ex:s
w

ex:teaches ex:name

An example schema
ex:jja ex:teaches ex:sw.

ex:jja rdf:type uni:Professor.
ex:sw rdf:type uni:Course.

uni:Professor rdfs:subClassOf uni:AcademicStaff.
uni:Associate rdfs:subClassOf uni:AcademicStaff.
uni:Assistant rdfs:subClassOf uni:AcademicStaff
uni:AcademicStaff rdfs:subClassOf uni:Member.
uni:Student rdfs:subClassOf uni:Member.
uni:administrative rdfs:subClassOf uni:Member.
ex:teaches rdf:domain uni:AcademicStaff;
 rdf:range uni:Course;
 rdf:subPropertyOf ex:isInvolvedIn.
ex:isInvolvedIn rdf:domain uni:Member;
 rdf:range uni:Course;
ex:name rdf:range xsd:string.

And also…
ex:jja ex:teaches ex:sw.

ex:jja rdf:type uni:Professor.
ex:sw rdf:type uni:Course.

uni:Professor rdfs:subClassOf uni:AcademicStaff.
uni:Associate rdfs:subClassOf uni:AcademicStaff.
uni:Assistant rdfs:subClassOf uni:AcademicStaff
uni:AcademicStaff rdfs:subClassOf uni:Member.
uni:Student rdfs:subClassOf uni:Member.
uni:administrative rdfs:subClassOf uni:Member.
ex:teaches rdf:domain uni:AcademicStaff;
 rdf:range uni:Course;
 rdf:subPropertyOf ex:isInvolvedIn.
ex:isInvolvedIn rdf:domain uni:Member;
 rdf:range uni:Course;
ex:name rdf:range xsd:string.

uni:Professor rdf:type rdfs:Class.
uni:Associate rdf:type rdfs:Class.
uni:Assistant rdf:type rdfs:Class.
uni:AcademicStaff rdf:type rdfs:Class.
uni:administrative rdf:type rdfs:Class.
uni:administrative rdf:type rdfs:Class.
uni:Member rdf:type rdfs:Class.

ex:teaches rdf:type rdfs:Property.
ex:isInvolvedIn rdf:type rdfs:Property.

rdfs:Class rdf:type rdfs:Class.
rdfs:Property rdf:type rdfs:Class.
rdf:type rdf:type rdfs:Property.
rdf:domain rdf:type rdfs:Property.
rdfs:subClassOf rdf:type rdfs:Property.
rdfs:subPropertyOf rdf:type rdfs:Property.
rdfs:Class rdfs:subClassOf rdfs:Resource.
rdfs:Property rdfs:subClassOf rdfs:Resource.
…

Not up to the user to define.
Meaning assigned by RDFS semantics.

Core Classes of RDF(S)

• rdfs:Resource, the class of all resources
• rdfs:Class, the class of all classes
• rdfs:Literal, the class of all literals
• rdf:Property, the class of all properties.
• rdf:Statement, the class of all reified

statements

Core Properties

• rdf:type, which relates a resource to its class
- The resource is declared to be an instance of that

class

• rdfs:subClassOf, which relates a class to
one of its superclasses

- All instances of a class are instances of its superclass

• rdfs:subPropertyOf, relates a property to
one of its super-properties

Core Properties (cont)

• rdfs:domain, which specifies the domain of
a property P

- The class of those resources that may appear as
subjects in a triple with predicate P

- If the domain is not specified, then any resource can
be the subject

• rdfs:range, which specifies the range of a
property P

- The class of those resources that may appear as
values in a triple with predicate P

Core Classes and Properties

• rdfs:subClassOf and rdfs:subPropertyOf
are transitive, by definition

• rdfs:Class is a subclass of rdfs:Resource
- Because every class is a resource

• rdfs:Resource is an instance of rdfs:Class
- rdfs:Resource is the class of all resources, so it is a

class

• Every class is an instance of rdfs:Class
- For the same reason

Subclass hierarchy
subclass rdfs:Resource

rdfs:Class

rdf:Property

rdfs:Literal

rdf:XMLLiteralrdfs:DataType

Instance relationships

rdfs:Resource

rdfs:Class

rdf:Property

rdfs:Literal

rdfs:DataType rdf:XMLLiteral

rdf:type (is a)

More instance relationships

rdfs:range

rdfs:domain

rdf:Property

rdf:type

rdfs:subClassOf rdfs:subPropertyOf

Reification and Containers
• rdf:subject, relates a reified statement to its

subject
• rdf:predicate, relates a reified statement to its

predicate
• rdf:object, relates a reified statement to its object
• rdf:Bag, the class of bags
• rdf:Seq, the class of sequences
• rdf:Alt, the class of alternatives
• rdfs:Container, which is a superclass of all

container classes, including the three above

More on containers

• Every property specifying that the subject contains the
object is of type
rdfs:ContainerMembershipProperty

- E.g. rdf:_1 rdf:type rdfs:ContainerMembershipProperty.

• rdfs:member is a super property of all instances of
rdfs:ContainerMembershipProperty

• RDFS semantics includes that
- if p rdf:type rdfs:ContainerMembershipProperty

and a p b
- then a rdfs:member b

Utility properties

• rdfs:seeAlso relates a resource to another
resource that explains it

• rdfs:isDefinedBy is a subproperty of
rdfs:seeAlso and relates a resource to the
place where its definition, typically an RDF
schema, is found

• rfds:comment, associates comments,
typically longer text, with a resource

• rdfs:label, associates a human-friendly
label (name) with a resource

RDF/XML
XML syntax for RDF (supplementary material)

Why an XML syntax?

• Turtle is intuitive, understandable and
machine processable

• But, there is better tool support, and off-the-
shelf libraries for XML

• So, an XML syntax for RDF is more wide-
spread

- today, it is also for legacy reasons

• But remember that:
- XML is not part of RDF (it is just another syntax)
- E.g. serialisation of XML is irrelevant for RDF

Basic rules
• An RDF document is represented by an XML element

with the tag rdf:RDF
- The content of this element is a number of descriptions

• Each description, with tag rdf:Description, denotes
a set of statements, all about a same resource

• An XML element inside a description denotes a
sentence

- The tag of the XML element denotes the attribute, and the value
inside the element denotes the value of the statement

• The object resource in a rdf:Description may be
one of the following:

- an about attribute, referencing an existing resource
- an ID attribute, creating a new resource
- without a name, creating an anonymous resource (bnode)

First RDF/XML example
• As in XML, namespaces are used to

disambiguate tag names
• RDF specific tags have a predefined

namespace, abbreviated to rdf

<?xml version="1.1" encoding="utf-8" ?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:ex="http://fct.unl.pt/my-rdf">

<rdf:Description rdf:about="http://fct.unl.pt/jja">
<ex:name> José Alferes </ex:name>

</rdf:Description>
</rdf:RDF>

Using datatypes
• With attribute rdf:datatype

- and note that an rdf:Description may define
several statements

<?xml version="1.1" encoding="utf-8" ?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:xsd="http://www.w3.org/2001/XLMSchema#"
 xmlns:ex="http://fct.unl.pt/my-rdf">

<rdf:Description rdf:about="http://fct.unl.pt/jja">
<ex:name> José Alferes </ex:name>
<ex:age rdf:datatype="&xsd:integer"> 48 </age>

</rdf:Description>
</rdf:RDF>

Referring to other resources
• Just use an rdf:resource attribute

<?xml version="1.1" encoding="utf-8" ?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:ex="http://fct.unl.pt/my-rdf">

<rdf:Description rdf:about="http://fct.unl.pt/sw">
<ex:courseName> Semantic Web </ex:courseName>
<ex:taughtBy rdf:resource="http://fct.unl.pt/jja"/>

</rdf:Description>

<rdf:Description rdf:about="http://fct.unl.pt/jja">
<ex:name> José Alferes </ex:name>

</rdf:Description>
</rdf:RDF>

Base URIs
• XML base can be used to simplify writing of

resource identifiers
- relative URIs are recognised by the absence of the

schema part; those are preceded by the XML base
<?xml version="1.1" encoding="utf-8" ?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:ex="http://fct.unl.pt/my-rdf"
 xml:base="http://fct.unl.pt/resources">

<rdf:Description rdf:about="sw">
<ex:courseName> Semantic Web </ex:courseName>
<ex:taughtBy rdf:resource="jja"/>

</rdf:Description>
<rdf:Description rdf:about="jja">
<ex:name> José Alferes </ex:name>

</rdf:Description>
</rdf:RDF>

rdf:about versus rdf:ID

• An rdf:about indicates that the resource
may be defined elsewhere

• An rdf:ID indicates that the resource is being
defined

• There is no real difference between defining
something in one place and further define it
elsewhere

- But helps for human readability

• rdf:ID is relative to namespace, and the
resource URI has an extra # in the middle

rdf:id example
<?xml version="1.1" encoding="utf-8" ?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:ex="http://fct.unl.pt/my-rdf"
 xml:base="http://fct.unl.pt/resources">

<rdf:Description rdf:id="sw">
<ex:courseName> Semantic Web </ex:courseName>

</rdf:Description>

<rdf:Description rdf:id="jja">
<ex:name> José Alferes </ex:name>

</rdf:Description>

<rdf:Description rdf:about="#sw">
<ex:taughtBy rdf:resource="#jja"/>
<ex:mainRef rdf:resource="http://press.mit/rs#semanticweb"/>

</rdf:Description>
</rdf:RDF>

Nested descriptions
• Nested descriptions are possible, although the

scope is always global
<?xml version="1.1" encoding="utf-8" ?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:ex="http://fct.unl.pt/my-rdf"
 xml:base="http://fct.unl.pt/resources">

<rdf:Description rdf:id="sw">
<ex:courseName> Semantic Web </ex:courseName>
<ex:mainRef rdf:resource="http://press.mit/rs#swb"/>
<ex:taughtBy>
<rdf:Description rdf:id="jja">
<ex:name> José Alferes </ex:name>

</rdf:Description>
</ex:taughtBy>

</rdf:Description>
</rdf:RDF>

Blank nodes
• Use rdf:nodeID, to have anonymous node IDs

<rdf:Description rdf:id="John">
<ex:hasCourse rdf:nodeID="id1"/>
<ex:hasCourse rdf:nodeID="id2"/>

</rdf:Description>

<rdf:Description rdf:nodeID="id1">
<ex:course rdf:resource="course1">
<ex:withGrade rdf:datatype="&xsd:integer>12</ex:withGrade>

</rdf:Description>

<rdf:Description rdf:nodeID="id2">
<ex:course rdf:resource="course2">
<ex:withGrade rdf:datatype="&xsd:integer>15</ex:withGrade>

</rdf:Description>

Blank nodes
• Or without name, and nested

<rdf:Description rdf:id="John">
<ex:hasCourse>
<rdf:Description>
<ex:course rdf:resource="course1">
<ex:withGrade rdf:datatype="&xsd:integer>12</ex:withGrade>

</rdf:Description>
</ex:hasCourse>
<ex:hasCourse>
<rdf:Description>
<ex:course rdf:resource="course2">
<ex:withGrade rdf:datatype="&xsd:integer>15</ex:withGrade>

</rdf:Description>
</rdf:Description>

Defining types of resources
• To be better understood with RDFS

<?xml version="1.1" encoding="utf-8" ?>
<rdf:RDF
 xmlns:rdf="http://www.w3.org/1999/02/22-rdf-syntax-ns#"
 xmlns:ex="http://fct.unl.pt/my-rdf"
 xml:base="http://fct.unl.pt/resources">

<rdf:Description rdf:id="sw">
<rdf:type rdf:resource="course"/>
<ex:courseName> Semantic Web </ex:name>
<ex:taughtBy rdf:resource="#jja"/>

</rdf:Description>
<rdf:Description rdf:id="jja">
<rdf:type rdf:resource="person"/>
<ex:name> José Alferes </ex:name>

</rdf:Description>
</rdf:RDF>

Abbreviated syntax

• Simplification rules:
1. Childless property elements within description

elements may be directly replaced by XML attributes
2. For description elements with a typing element we

can use the name specified in the rdf:type element
instead of rdf:Description

• These rules create syntactic variations of the
same RDF statement

- They are equivalent according to the RDF data
model, although they have different XML syntax

Applying abbreviations

- by rule 1 becomes:

<rdf:Description rdf:id="sw">
<rdf:type rdf:resource="course"/>
<ex:courseName> Semantic Web </ex:name>
<ex:taughtBy rdf:resource="jja"/>

</rdf:Description>

<rdf:Description rdf:id="sw" ex:courseName="Semantic Web">
<rdf:type rdf:resource="course"/>
<ex:taughtBy rdf:resource="jja"/>

</rdf:Description>

- and by rule 2 becomes:
<ex:course rdf:id="sw" ex:courseName="Semantic Web">
<ex:taughtBy rdf:resource="#jja"/>

</ex:course>

Containers
• Just apply the same principles. E.g.:

<ex:person rdf:id="jja" name="José Alferes">
<ex:coursesTaught>
<rdf:Bag>
<rdf:li rdf:resource="#sw"/>
<rdf:li rdf:resource="#sbd"/>

</rdf:Bag>
</ex:coursesTaught>

<rdf:Description rdf:about="http://press.mit/rs#swb">
<ex:authors rdf:parseType="Collections">
<rdf:Description rdf:resource="http://press.mit/rs#pascal"/>
<rdf:description rdf:resource="http://press.mit/rs#markus"/>
<rdf:description rdf:resource="http://press.mit/rs#sebastian"/>

</ex:authors>
</rdf:Description>

• For collections use rdf:parseType

