
Graph Databases

What kind of data?

What kind of data?

What kind of data?

Where does the data come from ?

WikiData

• Wikidata is a free, collaborative, multilingual,
secondary database, collecting structured data to
provide support for Wikipedia, Wikimedia
Commons, the other wikis of the Wikimedia
movement, and to anyone in the world.

- Multilingual. Editing, consuming, browsing, and
reusing the data is fully multilingual. Data entered in
any language is immediately available in all other
languages. Editing in any language is possible and
encouraged.

- A secondary database. Wikidata records not just
statements, but also their sources, and connections to
other databases. This reflects the diversity of knowledge
available and supports the notion of verifiability.

https://www.wikidata.org/wiki/Help:Wikimedia
https://www.wikidata.org/wiki/Help:Wikimedia
https://www.wikidata.org/wiki/Help:Wikimedia
https://www.wikidata.org/wiki/Help:Wikimedia

WikiData

WikiData

WikiData

Items and their data
are interconnected

The Semantic Web Vision
“I have a dream for the Web [in which
computers] become capable of analyzing
all the data on the Web – the content,
links, and transactions between people
and computers. A ‘Semantic Web’, which
should make this possible, has yet to emerge,
but when it does, the day-to-day mechanisms
of trade, bureaucracy and our daily lives will
be handled by machines talking to machines.
The ‘intelligent agents’ people have touted for
ages will finally materialize.”

Tim Berners-Lee, 1999

Linked Open Data Project

• An open initiative project
• “Exposing, sharing, and connecting pieces of

data, information, and knowledge on the
Semantic Web using URIs and RDF.”

• Large number of datasets with connections
between them

• Billions of triples, millions of links!

http://en.wikipedia.org/wiki/Data
http://en.wikipedia.org/wiki/Information
http://en.wikipedia.org/wiki/Knowledge
http://en.wikipedia.org/wiki/URI
http://en.wikipedia.org/wiki/Resource_Description_Framework

Linked Open Data

Graph Database Space

Labeled Property Graphs
• Formed by nodes and

relationships
• Nodes can contain

properties (key-value pairs)
• Nodes can be labeled with

one or more labels
• Relationships are named

and directed, and always
have a start and end node.

• Relationships can also
contain properties.

RDBMs lack relationships

• Relational Database Systems store data in:

TABLES

RDBMs lack relationships

We model with ER diagrams

RDBMs lack relationships
We implement

with tables
and foreign

keys

(everything are
tables)

RDBMs lack relationships
We implement

with tables
and foreign

keys

(everything are
tables)

N x M
relationships

Major issues with RDBMs
• When normalizing/optimizing the table schema entities get together

with relationships resulting in accidental complexity:
- Mixtures Business Data with Foreign Key Metadata

• Foreign keys add extra overhead at:
- Development time
- Production time

• Sparse tables with nullable columns require special extra code to check
and handle (and queries are more difficult)

• Joins involving several tables might be necessary just to get simple
information (e.g. what a customer bought?)

• Reciprocal queries can be costly
(what products did a customer by today?)

• Interconnected domains and recursive queries are hard or not supported

Representing connections

How would you represent this in a relational database?

Querying a social network

• Bob’s friends
• Who is friends with Bob
• Alice’s friends of friends

Bob’s friends

SELECT p1.Person
FROM Person p1 INNER JOIN PersonFriend
 ON (PersonFriend.PersonID = p1.ID)
INNER JOIN Person p2
 ON (PersonFriend.FriendID = p2.ID)
WHERE p1.Person = 'Bob'

Who is friends with Bob?

SELECT p1.Person
FROM Person p1 INNER JOIN PersonFriend
 ON (PersonFriend.FriendID = p1.ID)
INNER JOIN Person p2
 ON (PersonFriend.PersonID = p2.ID)
WHERE p2.Person = 'Bob'

Alice’s friends-of-friends

SELECT p1.Person AS PERSON, p2.Person AS FRIEND_OF_FRIEND
FROM PersonFriend pf1 JOIN Person p1
 ON (pf1.PersonID = p1.ID)
JOIN PersonFriend pf2
 ON (pf2.PersonID = pf1.FriendID)
JOIN Person p2
 ON (pf2.FriendID = p2.ID)
WHERE p1.Person = 'Alice' AND pf2.FriendID <> p1.ID

NOSQL lack relationships
• Most NoSQL databases lack mechanisms to

make connections among data, at least
without significant penalty at query time that
are not appropriate for real-time services

• Document stores usually resort to embedded
structures that can be quite efficient for several
applications, but do lack the flexibility
required by general graph databases and
require extensive care for keeping consistency

• Graph databases distinguish themselves by
index-free adjacency lists that allow better
performance when traversing graph structure.

Linking data in NOSQL

• Simulation of
foreign keys

• However, usually
no support for
consistency

• Recent versions of
NOSQL major
databases support
some form of
indexing to
optimize querying

Linking data in NOSQL

• Explicitly store
connections in the value

• If needed, we could add a
reverse direction
“friend_of”

• How to represent as an
“embedded document” ?

• How to perform efficient
traversals?

Graphs in RDBMs
• Usually, we have a

table (or tables) for
representing nodes
preferably with a
numeric primary key

• Usually, we have a
table (or tables) for
representing edges/
properties/
relationships with a
composite primary key

Graph DBs Embrace Relationships

Native Graphs of Neo4j

Graph DBs use index-free adjacency to ensure that
traversing connected data is extremely rapid.

Native Graphs of Neo4j
• Information is stored

in several files, most
of them having fixed-
length records

• The most important
are nodestore and
relationshipstore

• Using fixed-length
records allows O(1)
retrieval of records

Data Modeling
with Graphs

Graph Models
• Models are abstractions of reality to represent particular

aspects of the world, usually guided by specific
objectives, goals, motivations, and in the case of
Computer Science the problem we are trying to solve

• Computer Science uses several models:
- Physics like classical mechanisms used in games
- Entity-relationship Models and Relational Model
- UML Models (which are in fact another kind of Graph Model with

a lot of extra features)
- Graph Models (e.g. for representing networks)
- Logic Representations (e.g. for Mathematics)
- Category theory (a really abstract model of mathematics…)

Why Graphs are Cool

• Humans often communicate by drawing diagrams, using shapes and
arrows (look at your preferred slide making applications)

• Graphs are the abstract representation of these diagrams, reducing the
impedance mismatch between “analysis” and “implementation”, and
are neat to present!

• Properties of graphs are very well-studied in mathematics and
computer science

• A lot of problems are already encoded in graphs with appropriate
algorithms to solve them (e.g. recall A* for solving search-problems in
A.I., or your car GPS)

• Graphs are VERY expressive…

Labeled Property Graphs
• Formed by nodes and

relationships, properties ,
and labels

• Nodes can contain
properties (key-value pairs)

• Nodes can be taggedwith
one or more labels

• Relationships are named
and directed, and always
have a start and end node.

• Relationships can also
contain properties.

A data center

A data center

A data center ER model
• ER diagrams are graphs
• Relationships are

unidirectional
(implicit in the name)

• Other languages do
support some extra-
features (e.g. UML):

- Directionality
- N-ary relations
- Inheritance
- Association classes

A Data Center Table Schema
• Not clear which tables

represent entities or
relationships

• Foreign keys are
introduced to capture
relationships

• Denormalization
sometimes required to
optimize queries

• Difficult to evolve
without code rewriting
and significant risks

A Data Center Graph Model
• Enrich the diagrams with:

- Roles as Labels
- Attributes as Properties
- Connections as Relationships

• Test the model by
- Checking if graph “reads

well”
- Describing use-case queries

• Avoid antipatterns:
- Don’t encode entities into

relationships
- Do not conflate

Checking the model
• When a user reports a problem, we can limit the physical

fault-finding to problematic network elements between
the user and the application and the application and its
dependencies

• The MATCH clause here describes a variable length path
between one and five relationships long. The
relationships are unnamed and undirected (there’s no
colon or relationship name between the square brackets,
and no arrowtip to indicate direction).

Checking the model

Modeling guidelines
• Describe the Model in Terms of the

Application’s Needs (queries to perform)

• Nodes for Things, Relationships for Structure

• Fine-Grained versus Generic Relationships

• Use well-known patterns:
- Model Facts as Nodes

- Represent Complex Value Types as Nodes

- Patterns for Geospatial and Time data

Nodes or relationships?

• Nodes represent entities — the things in the domain that
are of interest to, and which can be labeled and grouped.

• Use node properties to represent entity attributes, plus
any necessary entity metadata, such as timestamps,
version numbers, etc.

• Represent a fact as a separate node with connections to
each of the entities engaged in that fact. The intermediate
node represents the outcome of an interaction between
two or more entities.

Nodes or relationships?
• Relationships express the connections between entities and

to establish semantic context for each entity, thereby
structuring the domain.

• Use relationship direction to further clarify relationship
semantics. Many relationships are asymmetrical, which is
why relationships in a property graph are always directed.
For bidirectional relationships, we should make our
queries ignore direction, rather than using two
relationships.

• Use relationship properties to express the strength, weight,
or quality of a relationship, plus any necessary relationship
metadata, such as timestamps, version numbers, etc.

Relationship Grain

• Fine-grained relationships
whenever closed set of
names (e.g. addresses)

• Use of “generic
relationships” with
properties to distinguish
them make queries slower

• Sometimes needed generic
and fine-grained
relationships (more on this
later on the course)

Cross-Domain Models
Relationships help both
partition a graph into

separate domains and
connect those domains.

Cross-Domain Models
Literary domain

Cross-Domain Models
Theatrical domain

Cross-Domain Models
Geoespatial domain

Common Modeling Pitfalls
• Model communications – Email

Common Modeling Pitfalls
• Join the users together through the emails they’ve exchanged

the most critical element
of the data, the actual
email, is missing

• This query returns the EMAILED relationships between Bob
and Charlie (there will likely be one for each email that Bob has
sent to Charlie)

• This tells us that emails have been
exchanged, but it tells us nothing about
the emails themselves:

Common Modeling Pitfalls

• We need to insert email nodes to represent the real emails
exchanged within the business

Common Modeling Pitfalls

• We need to insert email nodes to represent the real emails
exchanged within the business

Common Modeling Pitfalls

Common Modeling Pitfalls

• Retrieve all the emails that Bob has sent where he’s CC’d one of
his own aliases.

Common Modeling Pitfalls

Geospatial data

Time

Linked lists

Timelines

Querying Graphs
Neo4j Cypher Query Language

Cypher

• The Query Language of Neo4j, with an easy to
use and natural syntax

• Uses patterns to match and traverse the graph
• Typically, one uses anchor points to start

querying (maybe using indexes to find them
easily) and navigate from these anchor points

• MATCH … WHERE … RETURN instructions

Other Query Languages

• Cypher is the Query Language of Neo4j, with

an easy to use and natural syntax

• SPARQL - the RDF query language

• Gremlin - imperative, path-based query

language

ASCII art graph patterns

(emil:Person {name:'Emil'})
 <-[:KNOWS]-(jim:Person {name:'Jim'})
 -[:KNOWS]->(ian:Person {name:'Ian'})
 -[:KNOWS]->(emil)

(e)<-[:KNOWS]-(j)-[:KNOWS]->(i)-[:KNOWS]->(e)

MATCH and RETURN

Find the mutual friends of a user named Jim:

The previous Cypher pattern describes a simple graph structure,
but it doesn’t yet refer to any particular data in the database. To
bind the pattern to specific nodes and relationships in an existing
dataset we must specify some property values and node labels that
help locate the relevant elements in the dataset. For example:

(emil:Person {name:'Emil'})
 <-[:KNOWS]-(jim:Person {name:'Jim'})
 -[:KNOWS]->(ian:Person {name:'Ian'})
 -[:KNOWS]->(emil)

Here we’ve bound each node to its identifier using its name prop‐
erty and Person label. The emil identifer, for example, is bound to
a node in the dataset with a label Person and a name property
whose value is Emil. Anchoring parts of the pattern to real data in
this way is normal Cypher practice, as we shall see in the following
sections.

Speci!cation by Example
The interesting thing about graph diagrams is that they tend to contain specific
instances of nodes and relationships, rather than classes or archetypes. Even very
large graphs are typically illustrated using smaller subgraphs made from real nodes
and relationships. In other words, we tend to describe graphs using speci!cation by
example.

ASCII art graph patterns are fundamental to Cypher. A Cypher query anchors one or
more parts of a pattern to specific locations in a graph using predicates, and then
flexes the unanchored parts around to find local matches.

The anchor points in the real graph, to which some parts of the
pattern are bound, are determined by Cypher based on the labels
and property predicates in the query. In most cases, Cypher uses
metainformation about existing indexes, constraints, and predi‐
cates to figure things out automatically. Occasionally, however, it
helps to specify some additional hints.

Like most query languages, Cypher is composed of clauses. The simplest queries con‐
sist of a MATCH clause followed by a RETURN clause (we’ll describe the other clauses you
can use in a Cypher query later in this chapter). Here’s an example of a Cypher query
that uses these three clauses to find the mutual friends of a user named Jim:

MATCH (a:Person {name:'Jim'})-[:KNOWS]->(b)-[:KNOWS]->(c),
 (a)-[:KNOWS]->(c)
RETURN b, c

Querying Graphs: An Introduction to Cypher | 29

MATCH and RETURN

1. looking for a node labeled Person with a name property whose value is
Jim. The return value from this lookup is bound to the identifier a

2. A simple pattern

(a)-[:KNOWS]->(b)-[:KNOWS]->(c), (a)-[:KNOWS]->(c)  
 
that describes a path comprising three nodes

3. Cypher then matches the remainder of the pattern to the graph
immediately surrounding this anchor point. As it does so, it discovers
nodes to bind to the other identifiers. While a will always be anchored to
Jim, b and c will be bound to a sequence of nodes as the query executes.

The previous Cypher pattern describes a simple graph structure,
but it doesn’t yet refer to any particular data in the database. To
bind the pattern to specific nodes and relationships in an existing
dataset we must specify some property values and node labels that
help locate the relevant elements in the dataset. For example:

(emil:Person {name:'Emil'})
 <-[:KNOWS]-(jim:Person {name:'Jim'})
 -[:KNOWS]->(ian:Person {name:'Ian'})
 -[:KNOWS]->(emil)

Here we’ve bound each node to its identifier using its name prop‐
erty and Person label. The emil identifer, for example, is bound to
a node in the dataset with a label Person and a name property
whose value is Emil. Anchoring parts of the pattern to real data in
this way is normal Cypher practice, as we shall see in the following
sections.

Speci!cation by Example
The interesting thing about graph diagrams is that they tend to contain specific
instances of nodes and relationships, rather than classes or archetypes. Even very
large graphs are typically illustrated using smaller subgraphs made from real nodes
and relationships. In other words, we tend to describe graphs using speci!cation by
example.

ASCII art graph patterns are fundamental to Cypher. A Cypher query anchors one or
more parts of a pattern to specific locations in a graph using predicates, and then
flexes the unanchored parts around to find local matches.

The anchor points in the real graph, to which some parts of the
pattern are bound, are determined by Cypher based on the labels
and property predicates in the query. In most cases, Cypher uses
metainformation about existing indexes, constraints, and predi‐
cates to figure things out automatically. Occasionally, however, it
helps to specify some additional hints.

Like most query languages, Cypher is composed of clauses. The simplest queries con‐
sist of a MATCH clause followed by a RETURN clause (we’ll describe the other clauses you
can use in a Cypher query later in this chapter). Here’s an example of a Cypher query
that uses these three clauses to find the mutual friends of a user named Jim:

MATCH (a:Person {name:'Jim'})-[:KNOWS]->(b)-[:KNOWS]->(c),
 (a)-[:KNOWS]->(c)
RETURN b, c

Querying Graphs: An Introduction to Cypher | 29

WHERE clause

Find the mutual friends of a user named Jim:

Let’s look at each clause in more detail.

MATCH
The MATCH clause is at the heart of most Cypher queries. This is the speci!cation by
example part. Using ASCII characters to represent nodes and relationships, we draw
the data we’re interested in. We draw nodes with parentheses, and relationships using
pairs of dashes with greater-than or less-than signs (--> and <--). The < and > signs
indicate relationship direction. Between the dashes, set off by square brackets and
prefixed by a colon, we put the relationship name. Node labels are similarly prefixed
by a colon. Node (and relationship) property key-value pairs are then specified within
curly braces (much like a Javascript object).

In our example query, we’re looking for a node labeled Person with a name property
whose value is Jim. The return value from this lookup is bound to the identifier a.
This identifier allows us to refer to the node that represents Jim throughout the rest of
the query.

This start node is part of a simple pattern (a)-[:KNOWS]->(b)-[:KNOWS]->(c), (a)-
[:KNOWS]->(c) that describes a path comprising three nodes, one of which we’ve
bound to the identifier a, the others to b and c. These nodes are connected by way of
several KNOWS relationships, as per Figure 3-1.

This pattern could, in theory, occur many times throughout our graph data; with a
large user set, there may be many mutual relationships corresponding to this pattern.
To localize the query, we need to anchor some part of it to one or more places in the
graph. In specifying that we’re looking for a node labeled Person whose name prop‐
erty value is Jim, we’ve bound the pattern to a specific node in the graph—the node
representing Jim. Cypher then matches the remainder of the pattern to the graph
immediately surrounding this anchor point. As it does so, it discovers nodes to bind
to the other identifiers. While a will always be anchored to Jim, b and c will be bound
to a sequence of nodes as the query executes.

Alternatively, we can express the anchoring as a predicate in the WHERE clause.
MATCH (a:Person)-[:KNOWS]->(b)-[:KNOWS]->(c), (a)-[:KNOWS]->(c)
WHERE a.name = 'Jim'
RETURN b, c

Here we’ve moved the property lookup from the MATCH clause to the WHERE clause.
The outcome is the same as our earlier query.

RETURN
This clause specifies which nodes, relationships, and properties in the matched data
should be returned to the client. In our example query, we’re interested in returning

30 | Chapter 3: Data Modeling with Graphs

The previous Cypher pattern describes a simple graph structure,
but it doesn’t yet refer to any particular data in the database. To
bind the pattern to specific nodes and relationships in an existing
dataset we must specify some property values and node labels that
help locate the relevant elements in the dataset. For example:

(emil:Person {name:'Emil'})
 <-[:KNOWS]-(jim:Person {name:'Jim'})
 -[:KNOWS]->(ian:Person {name:'Ian'})
 -[:KNOWS]->(emil)

Here we’ve bound each node to its identifier using its name prop‐
erty and Person label. The emil identifer, for example, is bound to
a node in the dataset with a label Person and a name property
whose value is Emil. Anchoring parts of the pattern to real data in
this way is normal Cypher practice, as we shall see in the following
sections.

Speci!cation by Example
The interesting thing about graph diagrams is that they tend to contain specific
instances of nodes and relationships, rather than classes or archetypes. Even very
large graphs are typically illustrated using smaller subgraphs made from real nodes
and relationships. In other words, we tend to describe graphs using speci!cation by
example.

ASCII art graph patterns are fundamental to Cypher. A Cypher query anchors one or
more parts of a pattern to specific locations in a graph using predicates, and then
flexes the unanchored parts around to find local matches.

The anchor points in the real graph, to which some parts of the
pattern are bound, are determined by Cypher based on the labels
and property predicates in the query. In most cases, Cypher uses
metainformation about existing indexes, constraints, and predi‐
cates to figure things out automatically. Occasionally, however, it
helps to specify some additional hints.

Like most query languages, Cypher is composed of clauses. The simplest queries con‐
sist of a MATCH clause followed by a RETURN clause (we’ll describe the other clauses you
can use in a Cypher query later in this chapter). Here’s an example of a Cypher query
that uses these three clauses to find the mutual friends of a user named Jim:

MATCH (a:Person {name:'Jim'})-[:KNOWS]->(b)-[:KNOWS]->(c),
 (a)-[:KNOWS]->(c)
RETURN b, c

Querying Graphs: An Introduction to Cypher | 29

Other Clauses

the nodes bound to the b and c identifiers. Each matching node is lazily bound to its
identifier as the client iterates the results.

Other Cypher Clauses
The other clauses we can use in a Cypher query include:

WHERE
Provides criteria for filtering pattern matching results.

CREATE and CREATE UNIQUE
Create nodes and relationships.

MERGE
Ensures that the supplied pattern exists in the graph, either by reusing existing
nodes and relationships that match the supplied predicates, or by creating new
nodes and relationships.

DELETE
Removes nodes, relationships, and properties.

SET
Sets property values.

FOREACH
Performs an updating action for each element in a list.

UNION
Merges results from two or more queries.

WITH
Chains subsequent query parts and forwards results from one to the next. Similar
to piping commands in Unix.

START
Specifies one or more explicit starting points—nodes or relationships—in the
graph. (START is deprecated in favor of specifying anchor points in a MATCH
clause.)

If these clauses look familiar—especially if you’re a SQL developer—that’s great!
Cypher is intended to be familiar enough to help you move rapidly along the learning
curve. At the same time, it’s different enough to emphasize that we’re dealing with
graphs, not relational sets.

We’ll see some examples of these clauses later in the chapter. Where they occur, we’ll
describe in more detail how they work.

Querying Graphs: An Introduction to Cypher | 31

Playing with Neo4J
MATCH (p:Person)-->(m:Movie) WHERE p.name = 'Tom Hanks' RETURN p, m

Playing with Neo4J
MATCH (p:Person)-->(m:Movie) WHERE p.name = 'Tom Hanks' RETURN p, m

MATCH (p:Person)-->(m:Movie) WHERE p.name = 'Tom Hanks' RETURN p, m

Playing with Neo4J
MATCH (p:Person)-->(m:Movie) WHERE p.name = 'Tom Hanks' RETURN p, m

Playing with Neo4J
MATCH (p:Person)-->(m:Movie) WHERE p.name = 'Tom Hanks' RETURN m.title

Playing with Neo4J
MATCH (p:Person)-[rel]->(m:Movie) WHERE p.name = 'Tom Hanks' RETURN p,rel, m

Playing with Neo4J
MATCH (p:Person)-[rel]->(m:Movie) WHERE p.name = 'Tom Hanks' RETURN p,rel, m

Playing with Neo4J
MATCH (p:Person)-[rel]->(m:Movie) WHERE p.name = 'Tom Hanks' RETURN p,rel, m

More info

• https://neo4j.com/docs/

• https://neo4j.com/docs/pdf/cypher-
refcard-4.3.pdf

• https://neo4j.com/videos/

https://neo4j.com/docs/
https://neo4j.com/docs/pdf/cypher-refcard-4.3.pdf
https://neo4j.com/docs/pdf/cypher-refcard-4.3.pdf
https://neo4j.com/videos/

