
MD 2022/2022

Data Modeling

Multidimensional Modeling - Order Management

07

Multidimensional Design -

Notice

! Author

" João Moura Pires (jmp@di.fct.unl.pt)

! This material can be freely used for personal or academic purposes without

any previous authorization from the author, only if this notice is maintained

with.

! For commercial purposes the use of any part of this material requires the

previous authorization from the author.

2

Multidimensional Design -

Bibliography

! Many examples are extracted and adapted from

" The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling

(Second Edition) - Ralph Kimball, Margy Ross

3

Multidimensional Design -

Table of Contents

! Introduction

! Order Transactions

" Fact Normalization; Customer Ship-To Dimension; Customer - Sales organization; Junk

Dimensions; Multiple Currencies; Header and Line Item Facts with Different Granularity

! Invoice Transactions

! Accumulating Snapshot for the Order Fulfillment Pipeline

! Fact Table Comparison

! Designing Real-Time Partitions

4

Multidimensional Design -

Data Modeling

Introduction

5

Multidimensional Design -

Order Management

! Order management consists of several critical business processes:

" Order,

" Shipment,

" Invoice processing.

! Business metrics:

" Sales volume

" Invoice revenue

6

[Kimball, 2002]

Goal: to discuss so
me techniques

Multidimensional Design -

Data Modeling

Order Transactions

7

Multidimensional Design -

Order Transactions

! The natural granularity for an order transaction fact table:

" One row for each line item on an order.

" The facts associated with this process typically include the order quantity, extended

gross order dollar amount, order discount dollar amount, and extended net order

dollar amount (which is equal to the gross order amount less the discounts).

8

[Kimball, 2002]

Multidimensional Design -

Fact Normalization

! To normalize the fact table so that there’s a single, generic fact amount, along with

a dimension that identifies the type of fact?

! This technique may make sense when:

" The set of facts is sparsely populated for a given fact row

− If we were to normalize the facts, we’d be multiplying the number of rows in the

fact table by the number of fact types.

" And no computations are made between facts.

− if we are performing any arithmetic function between the facts (such as discount

amount as a percentage of gross order amount), it is far easier if the facts are in the

same row.

9

[Kimball, 2002]

Multidimensional Design -

Customer Ship-To Dimension

! The customer ship-to dimension contains one row for each discrete location to

which we ship a product. Customer ship-to dimension tables can range from

moderately sized (thousands of rows) to extremely large (millions of rows)

depending on the nature of the business.

10

[Kimball, 2002]

Multidimensional Design -

Customer Ship-To Dimension

! Several separate and independent hierarchies typically coexist in a customer

ship-to dimension:

" Since the ship-to location is a point in space, any number of geographic hierarchies may

be defined by nesting ever-larger geographic entities around the point.

" Another common hierarchy is the customer’s organizational hierarchy, assuming that

the customer is a corporate entity. For each customer ship-to, we might have a

customer bill-to and customer corporation.

11

[Kimball, 2002]

Multidimensional Design -

Customer Ship-To Dimension

! The implied assumption that multiple ship-tos roll up to a single bill-to in a

many-to-one relationship may be wrong. There are always a few exceptions

involving ship-tos that are associated with more than one bill-to.

" If this is a rare occurrence, it would be reasonable to generalize the customer ship-to

dimension so that the grain of the dimension is each unique ship-to/bill-to combination

− If there are two sets of bill-to information associated with a given ship-to location,

then there would be two rows in the dimension, one for each combination.

" If many of the ship-tos are associated with many bill-tos in a robust many-to-many

relationship, then ship-to and bill-to probably need to be handled as separate

dimensions that are linked together by the fact table.

12

[Kimball, 2002]

Multidimensional Design -

Customer - Sales organization

! Designers sometimes question whether sales organization attributes should be

modeled as a separate dimension or the attributes just should be added to the

existing customer dimension.

" If sales reps are highly correlated with customer ship-tos in a one-to-one or many-to-one

relationship, combining the sales organization attributes with the customer ship-to

dimension is a viable approach.

" However, sometimes the relationship between sales organization and customer ship-to

is more complicated.

13

[Kimball, 2002]

Multidimensional Design -

Customer - Sales organization

! The one-to-one or many-to-one relationship may turn out to be a many-to many

relationship. (see previous slide)

! If the relationship between sales rep and customer ship-to varies over time or under

the influence of a fourth dimension such as product, then the combined dimension

is in reality some kind of fact table itself!

" In this case, create separate dimensions for the sales rep and the customer ship-to.

! If the sales rep and customer ship-to dimensions participate independently in other

business process fact tables, we’d likely keep the dimensions separate.

" Creating a single customer ship-to dimension with sales rep attributes exclusively around

orders data may make some of the other processes and relationships difficult to express

14

[Kimball, 2002]

Multidimensional Design -

Customer - Sales organization

! When entities have a fixed, time-invariant, strongly correlated relationship, they

obviously should be modeled as a single dimension.

! In most other cases, your design likely will be simpler and more manageable when

you separate the entities into two dimensions (while remembering the general

guidelines concerning too many dimensions).

! Users sometimes want the ability to analyze the complex assignment of sales reps

to customers over time, even if no order activity has occurred. In this case, we could

construct a fact-less fact table, to capture the sales rep coverage, even if some of

the assignments never resulted in a sale.

15

[Kimball, 2002]

Multidimensional Design -

Junk Dimensions

! We are often left with a number of miscellaneous indicators and flags, each of which

takes on a small range of discrete values.

" Leave the flags and indicators unchanged in the fact table row.

− This could cause the fact table row to swell alarmingly.

" Make each flag and indicator into its own separate dimension.

− Doing so could cause our 5-dimension design to balloon into a 25-dimension

design.

" Strip out all the flags and indicators from the design.

" An appropriate approach for tackling these flags and indicators is to study them

carefully and then pack them into one or more junk dimensions.

16

[Kimball, 2002]

Multidimensional Design -

Junk Dimensions

17

[Kimball, 2002]

Multidimensional Design -

Multiple Currencies

! We may be capturing order transactions in more than 15 different currencies. We

certainly wouldn’t want to include columns in the fact table for each currency because

theoretically there are an open-ended number of currencies.

! Requirements:

" The order transactions be expressed in both local currency and the standardized

corporate currency.

" We may need to allow a manager in any country to see order volume in any

currency.

18

[Kimball, 2002]

Multidimensional Design -

Multiple Currencies

! The conversion rate table contains all combinations of effective currency exchange

rates going in both directions because the symmetric rates between two currencies are

not exactly equal.

19

[Kimball, 2002]

Multidimensional Design -

Header and Line Item Facts with Different Granularity

! It is quite common in parent-child transaction databases to encounter facts of differing

granularity.

" On an order, for example, there may be a shipping charge that applies to the entire order that isn’t

available at the individual product-level line item in the operational system.

! A procedure broadly referred to as allocating. Allocating the parent order facts to the child line-

item level is critical if we want the ability to slice and dice and roll up all order facts by all

dimensions, including product, which is a common requirement.

20

[Kimball, 2002]

Multidimensional Design -

Header and Line Item Facts with Different Granularity

! Without allocations, we’d be unable to explore header facts by product because the product isn’t

identified in a header-grain fact table. If we are successful in allocating facts down to the lowest

level, the problem goes away.

21

[Kimball, 2002]

Multidimensional Design -

Data Modeling

Fact Table Comparison

22

Multidimensional Design -

Fact Table Comparison

! Transaction Fact Tables: These fact tables represent an event that occurred at an

instantaneous point in time.

! Periodic Snapshot Fact Tables: Periodic snapshots are needed to see the cumulative

performance of the business at regular, predictable time intervals.

! Accumulating Snapshot Fact Tables: Represent an indeterminate time span, covering

the complete life of a transaction or discrete product (or customer).

! These three fact table variations are not totally dissimilar because they share

conformed dimensions, which are the keys to building separate fact tables that can be

used together with common, consistent filters and labels. While the dimensions are

shared, the administration and rhythm of the three fact tables are quite different.

23

[Kimball, 2002]

Multidimensional Design -

Fact Table Comparison

24

[Kimball, 2002]

Characteristic Transaction Grain Periodic Snapshot
Grain

Accumulating
Snapshot Grain

Time Period
Represented Point in time Regular predictable

intervals
Inderterminate time

span, typically short-
lived

Grain One row per transaction
event One row per period One row per life

Fact table loads Insert Insert Insert and update

Fact row updates Not revisited Not revisited Revisited whenever
activity

Date Dimension Transaction Date End-of period date Multiple dates for
standard milestones

Facts Transaction activity Performance for
predefined time interval

Performance over finite
lifetime

Multidimensional Design -

Transaction Fact Tables

! The most fundamental view of the business’s operations is at the individual

transaction level.

! These fact tables represent an event that occurred at an instantaneous point in

time.

! A row exists in the fact table for a given customer or product only if a transaction

event occurred.

! The lowest-level data is the most naturally dimensional data, supporting analyses that

cannot be done on summarized data. Transaction-level data let us analyze behavior in

extreme detail.

! Once a transaction has been posted, we typically don’t revisit it.

25

[Kimball, 2002]

Multidimensional Design -

Periodic Snapshot Fact Tables

! Periodic snapshots are needed to see the cumulative performance of the business at

regular, predictable time intervals.

! With the periodic snapshot, we take a picture (hence the snapshot terminology) of the

activity at the end of a day, week, or month, then another picture at the end of the next

period, and so on. The periodic snapshots are stacked consecutively into the fact table.

! The periodic snapshot represents an aggregation of the transactional activity that

occurred during a time period.

! The periodic snapshot fact table often is the only place to easily retrieve a regular,

predictable, view of trends of the key business performance metrics.

26

[Kimball, 2002]

Multidimensional Design -

Accumulating Snapshot Fact Tables

! Accumulating snapshots almost always have multiple date stamps, representing the

predictable major events or phases that take place during the course of a lifetime.

! Often there’s an additional date column that indicates when the snapshot row was

last updated.

! Since many of these dates are not known when the fact row is first loaded, we must use

surrogate date keys to handle undefined dates.

! We revisit accumulating snapshot fact table rows to update them.

! Sometimes accumulating and periodic snapshots work in conjunction with one another.

" When we build the monthly snapshot incrementally by adding the effect of each

day’s transactions to an accumulating snapshot.

27

[Kimball, 2002]

Multidimensional Design -

Data Modeling

Designing Real-Time Partitions

28

Multidimensional Design -

Designing Real-Time Partitions

! The data warehouse now must extend its existing historical time series seamlessly

right up to the current instant.

" If the customer has placed an order in the last hour, we need to see this order in

the context of the entire customer relationship.

" Furthermore, we need to track the hourly status of this most current order as it

changes during the day.

! Even though the gap between the operational transaction-processing systems and the

data warehouse has shrunk in most cases to 24 hours, the rapacious needs of our

marketing users require the data warehouse to fill this gap with near real-time data.

29

[Kimball, 2002]

Multidimensional Design -

Requirements for the Real-Time Partition

! The real-time partition is a separate table subject to special update and query rules:

" Contain all the activity that occurred since the last update of the static data

warehouse. We will assume that the static tables are updated each night at

midnight.

" Link as seamlessly as possible to the grain and content of the static data

warehouse fact tables.

" Be so lightly indexed that incoming data can be continuously dribbled in.

! The realtime partition has a different structure corresponding to each fact table

type: transaction grain, periodic snapshot grain, and accumulating snapshot

grain.

30

[Kimball, 2002]

Multidimensional Design -

Transaction Grain Real-Time Partition

! The real-time partition has exactly the same dimensional structure as its underlying

static fact table.

" It only contains the transactions that have occurred since midnight, when we

loaded the regular data warehouse tables.

" The real-time partition may be completely unindexed both because we need to

maintain a continuously open window for loading and because there is no time

series (since we only keep today’s data in this table)

" We avoid building aggregates on this table because we want a minimalist

administrative scenario during the day.

! We attach the real-time partition to our existing applications by drilling across from the

static fact table to the real-time partition. Time-series aggregations (for example, all

sales for the current month) will need to send identical queries to the two fact tables

and add them together.

31

[Kimball, 2002]

Multidimensional Design -

Transaction Grain Real-Time Partition

! Example: In a relatively large retail environment experiencing 10 million transactions

per day, the static fact table would be pretty big:

" Assuming that each transaction grain record is 40 bytes wide (7 dimensions plus 3

facts, all packed into 4-byte fields), we accumulate 400 MB of data each day.

" Over a year this would amount to about 150 GB of raw data. Such a fact table would

be heavily indexed and supported by aggregates.

! The daily tranche of 400 MB for the real-time partition could be pinned in memory.

Forget indexes, except for a B-Tree index on the fact table primary key to facilitate the

most efficient loading.

! We send identical queries to the static fact table and the real-time partition

32

[Kimball, 2002]

Multidimensional Design -

Periodic Snapshot Real-Time Partition

! If the static data warehouse fact table has a periodic grain (say, monthly), then the

real-time partition can be viewed as the current hot-rolling month.

" Suppose that we are working for a big retail bank with 15 million accounts.

− The static fact table has the grain of account by month. A 36-month time series

would result in 540 million fact table records. Again, this table would be indexed

extensively and supported by aggregates to provide good query performance.

" The real-time partition, on the other hand, is just an image of the current

developing month, updated continuously as the month progresses.

− Semi-additive balances and fully additive facts are adjusted as frequently as they

are reported. In a retail bank, the core fact table spanning all account types is

likely to be quite narrow, of 480 MB that can be pinned in memory.

33

[Kimball, 2002]

Multidimensional Design -

Periodic Snapshot Real-Time Partition

! Query applications drilling across from the static fact table to the real-time partition have

a slightly different logic compared with the transaction grain:

" Account balances and other measures of intensity can be trended directly across

the tables.

" Additive totals accumulated during the current rolling period may need to be

scaled upward to the equivalent of a full month to keep the results from looking

anomalous.

" Finally, on the last day of the month, hopefully the accumulating real-time

partition can just be loaded onto the static data warehouse as the most current

month, and the process can start again with an empty real-time partition.

34

[Kimball, 2002]

Multidimensional Design -

Accumulating Snapshot Real-Time Partition

! The real-time partition will consist of only those line items which have been updated

today.

" At the end of the day, the records in the real-time partition will be precisely the new

versions of the records that need to be written onto the main fact table either by

inserting the records if they are completely new or overwriting existing records with the

same primary keys.

" Typically, the realtime partition will be significantly smaller than in the first two cases and

it will fit in memory.

" Queries against an accumulating snapshot with a real-time partition need to fetch the

appropriate line items from both the main fact table and the partition and can either drill

across the two tables by performing a sort merge (outer join) on the identical row

headers or perform a union of the rows from the two tables, presenting the static view

augmented with occasional supplemental rows in the report.

35

[Kimball, 2002]

Multidimensional Design -

Data Modeling

Further Reading and Summary

36

Multidimensional Design -

What you should know

! The differences between the three types of transaction tables and its main concerns

! The following concepts: Dimension Role-Playing; Product Dimension Revisited;

Customer Ship-To Dimension; Deal Dimension; Degenerate Dimension for Order

Number; Junk Dimensions; Multiple Currencies; Header and Line Item Facts with

Different Granularity

! The need for real-time partitions and the proposed approach

37

[Kimball, 2002]

Multidimensional Design -

Further Readings

! Further Readings

" The Data Warehouse Toolkit: The Complete Guide to Dimensional Modeling (Second

Edition), Ralph Kimball, Margy Ross. 2002

− From page 107 to 139

38

[Kimball, 2002]

