

02 Data Warehouse and OLAP

MD 2021/2022

Notice

Author

João Moura Pires (jmp@fct.unl.pt)

This material can be freely used for personal or academic purposes without any previous authorization from the author, provided that this notice is maintained/kept.

For commercial purposes the use of any part of this material requires the previous authorization from the author.

Bibliography

- Many examples are extracted and adapted from:
 - The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling (Third Edition). Ralph Kimball, Margy Ross.Wiley, 2013, ISBN: 978-1-118-53080-1
 - Building the Data Warehouse (4rd Edition), W. H. Inmon, Wiley, (4rd Edition), 2005, ISBN: 0-7645-9944-5
 - Mastering Data Warehouse Design : Relational and Dimensional Techniques.
 Claudia Imhoff, Nicholas Galemmo, Jonathan G. Geiger. Wiley, 2003. ISBN:

0471324213

Table of Contents

- Decision Support Systems
- Historic perspective
- The need for a new approach
- DW Reference Model
- Quick overview of OLAP cube concepts
- Introduction to Multidimensional Modeling

Decision Support Systems

Decision Support Systems - Fields

- It is clear that DSS belong to an environment with multidisciplinary foundations, including (but not exclusively):
 - Database research;
 - Artificial intelligence;
 - Human-computer interaction;
 - Simulation methods;
 - Software engineering;
 - Telecommunications.

Decision Support Systems - Many approaches

- At the conceptual level, Power (2002) differentiates DSSs:
 - A model-driven DSS emphasizes access to and manipulation of a statistical, financial, optimization, or simulation model. Model-driven DSS use data and parameters provided by DSS users to aid decision makers in analyzing a situation, but they are not necessarily data intensive.
 - A communication-driven DSS supports more than one person working on a shared task; (collaborative tools)
 - A data-driven DSS or data-oriented DSS emphasizes access to and manipulation of a time series of internal company data and, sometimes, external data.
 - A document-driven DSS manages, retrieves and manipulates unstructured information in a variety of electronic formats.
 - A knowledge-driven DSS provides specialized problem solving expertise stored as facts, rules, procedures, or in similar structures.

Decision Support Systems - Users of DSS

- Hättenschwiler (1999) identifies the following DSS users with different roles or functions in the decision making process
 - decision maker
 - advisors
 - domain experts
 - system experts
 - data collectors

What is about this part of the course?

Data Warehouse (DW)

For now, lets think about DW as the Warehouse where all the important data is integrated and stored, including historical data, for future support of Data Analysis and Decision making

On-line analytical processing (OLAP)

It is an approach to quickly provide the answer to analytical queries that are dimensional in nature. The data comes from de DW

Decisions in the context of an organization?

Strategic decisions (long term)

Examples

- Analyzing the actual pattern buying to develop a new product;
- Deciding the creation of a new university course.
- Short term decisions tactical decisions
 - Examples
 - Changing the volumes of components to buy to our suppliers;
 - Analyzing the factors affecting the unsuccessful results of so many students.

Some analysis patterns used by OLAP users

- Summarizing and aggregation of large amount of data
- Filtering, sorting, ranking
- Comparisons of different sets of data
- Search for outliers
- Analysis and discovery of patterns

Analysis of tendencies in the data

Who are the DW and OLAP users?

- DSS analyst is a business person first and foremost, and a technician second.
 - The primary job of the DSS analyst is to define and discover information used in corporate decision-making.
- The DSS analyst has a mindset of "Give me what I say I want, then I can tell you what I really want.". In other words, the DSS analyst operates in a mode of discovery.
 - this has a profound effect on the way the data warehouse is developed and on how systems using the data warehouse are developed.

Historical perspective

NOVA SCHOOL OF SCIENCE & TECHNOLOGY

DW e OLAP - 13

Two different needs

- Running the organization
 - Operational Data
 - Transactional Data

- Analyzing the organization performance
 - Aggregating Data
 - Comparing Data

The "Extract" Program

Start with some parameters, search a file based on the satisfaction of the parameters, then pull the data elsewhere.

extract processing

[Inmon,2002]

The "Extract" Program became very popular

Because extract processing can move data out of the way of highperformance online processing, there is no conflict in terms of performance when the data needs to be analyzed en masse.

When data is moved out of the operational, transaction-processing domain with an extract program, a shift in control of the data occurs. The end user then owns the data once he or she takes control of it.

The "Extract" Program became so popular that ...

NOVA SCHOOL OF

SCIENCE & TECHNOLOGY

NC

LABORATORY FOR COMPUTER SCIENCE AND INFORMATICS DW e OLAP - 17

Problems with this pattern of many extracting programs

Lack of Data credibility

Productivity

Inability to transform data into information

NOVA SCHOOL OF SCIENCE & TECHNOLOGY

Problems with this pattern of many extracting programs

DW e OLAP - 19

Problems with this pattern of many extracting programs

- Problems with productivity
 - Locate and analyze the data for the report
 - Compile de data for the project
 - Get resources to accomplish these two tasks

- Different technical skills to access data across the organization
- Naming and concepts problems (ambiguity, etc)
- Data has to be *normalized* and integrated
- The process may be repeated for each new report need

The need for a different approach

Operational Systems (most - OLTP)

- OLTP On Line Transaction Processing
 - Systems that support the running activities of the organization
 - Examples:
 - Point of sale in stores;
 - ATM and Bank operations
 - e-commerce (amazon, iTunes, etc)
 - Some characteristics:
 - Thousand of operations per second
 - Repeated operations dealing with small amounts of data (insert, update, remove)
 - Real Time

DW and OLAP systems

OLAP – On Line Analytical Processing

- Systems that provide the users the necessary capabilities to analyze many and different aspects of organization activities and its performance.
- Examples
 - How well certain product is selling in different regions? How well is the evolution in the market from its introduction?
 - Which are the top ten selling product in each region? and globally?
- Some characteristics:
 - Small number of queries (per day), when compared with OLTP systems
 - Large amount of data processed in each query, in order to obtain a small output.
 - It is hard to predict the queries and in general they are much more diverse, when compared with OLTP systems
 - Reading and processing data but no writing.

The users of an OLTP system are *running* the wheels of the organization.

The users of a data warehouse are *watching* the wheels of the organization

Analytic versus Operational - Primitive and Derived Data

PRIMITIVE DATA/OPERATIONAL DATA	DERIVED DATA/DSS DATA
application oriented	subject oriented
detailed	summarized, otherwise refined
accurate, as of the moment of access	represents values over time, snapshots
serves the clerical community	serves the managerial community
can be updated	is not updated
run repetitively	run heuristically
requirements for processing understood a priori	requirements for processing not understood a priori
performance sensitive	performance relaxed
accessed a unit at a time	accessed a set at a time
transaction driven	analysis driven
high availability	relaxed availability
non-redundancy	redundancy is a fact of life
static structure; variable contents	flexible structure
small amount of data used in a process	large amount of data used in a process
supports day-to-day operations	supports managerial needs
high probability of access	low, modest probability of access

Analytic versus Operational - Patterns of utilization

"The users of an OLTP system are *running* the wheels of the organization. The users of a data warehouse are *watching* the wheels of the organization" [Kimball]

The different patterns of hardware utilization in the different environments.

Analytic versus Operational - Separated Environments

"The users of an OLTP system are *running* the wheels of the organization. The users of a data warehouse are *watching* the wheels of the organization" [Kimball]

DW Reference Model

NOVA SCHOOL OF SCIENCE & TECHNOLOGY

DW e OLAP - 28

DW and OLAP systems

A data warehouse is an analytical database that is used as the foundation of a decision support system. It is designed for large volumes of read-only data, providing intuitive access to information that will be used in making decisions.

A data warehouse is created as ongoing commitment by the organization to ensure the appropriate data is available to the appropriate end user at the appropriate time

[Vidette Poe, et all, 1997]

Role and Purpose of the Data Warehouse

[Imhoff, 2003]

DW e OLAP - 30

The multipurpose nature of the DW

- It should be enterprise focused
- Its design should be as resilient to change as possible.
- It should be designed to load massive amounts of data in very short amounts of time.
- It should be designed for optimal data extraction processing by the data delivery programs.
- Its data should be in a format that supports any and all possible BI analyses in any and all technologies.

The Data Environment - Reference Model

Design Pattern for the DW. Imnon School

- Non-redundant
- Stable
 - since change is inevitable, we must be prepared to accommodate newly discovered entities or attributes as new BI capabilities and data marts are created.
- Consistent
- Flexible in Terms of the Ultimate Data Usage

Design Pattern for the DW . Imnon School

CIENCE & TECHNOLOGY

DW e OLAP - 34

Basic elements of the data warehouse (Kimball)

Ν Λ

NOVA SCHOOL OF SCIENCE & TECHNOLOGY

[Kimball, 2002]

DW e OLAP - 35

Data Staging Area

The data staging area of the data warehouse is both a **storage area** and a **set of processes** commonly referred to as extract-transformation-load (ETL). The data staging area is everything between the operational source systems and the data presentation area.

Extraction is the first step in the process of getting data into the data warehouse environment. Extracting means reading and understanding the source data and copying the data needed for the data warehouse into the staging area for further manipulation:

cleansing the data (correcting misspellings, resolving domain conflicts, dealing with missing elements, or parsing into standard formats), combining data from multiple sources, de-duplicating data, and assigning warehouse keys.

Data Staging Area

- The data staging area is dominated by the simple activities of sorting and sequential processing. In many cases, the data staging area is not based on relational technology but instead may consist of a system of flat files. However, a normalized database for data staging storage is acceptable.
- It is acceptable to create a normalized database to support the staging processes; however, this is not the end goal. The normalized structures must be off-limits to user queries because they defeat understandability and performance. As soon as a database supports query and presentation services, it must be considered part of the data warehouse presentation area. By default, normalized databases are excluded from the presentation area, which should be strictly dimensionally structured.

The Presentation Area

- The presentation area is a series of integrated data marts. A data mart is a wedge of the overall presentation area pie. In its most simplistic form, a data mart presents the data from a single business process (that cross the boundaries of organizational functions).
- A dimensional model contains the same information as a normalized model but packages the data in a format whose design goals are user understandability, query performance, and resilience to change.
- The presentation area data marts must contain detailed, atomic data. Atomic data is required to withstand assaults from unpredictable ad hoc user queries.
- All the data marts must be built using common dimensions and facts, which are referred has being *conformed*. Without shared, conformed dimensions and facts, a data mart is a standalone stovepipe application.

The Presentation Area

- Data in the queryable presentation area of the data warehouse must be **dimensional**, must be **atomic**, and must **adhere to the data warehouse bus architecture**. Using the bus architecture is the secret to building distributed data warehouse systems.
- If the presentation area is based on a relational database, then these dimensionally modeled tables are referred to as **star schemas**.
- If the presentation area is based on multidimensional database or online analytic processing (OLAP) technology, then the data is stored in **cubes**.
- **Dimensional modeling** is applicable to both **relational** and **multidimensional databases**.

NOVA SCHOOL OF SCIENCE & TECHNOLOGY

DW e OLAP - 40

What you should know:

- The concept of Decision Support System, its evolution, the different types of DSS and the related Scientific areas.
- DW and OLAP viewed as Data-Driven DSS. The justification to the actual importance of DW and OLAP in the DSS world.
- Basic understand of the DW reference architecture
- Fundamental differences from OLTP and OLAP systems, models, use, and users
- Some analysis patterns used by OLAP users.

Quick overview of OLAP cube concepts

Multidimensional Cube

Multidimensional Cube

NOVA SCHOOL OF SCIENCE & TECHNOLOGY

Slice: a subset of multidimensional data

Slice: a slice is defined by selecting specific values of dimension's attributes

Basic operation: Aggregation

Introduction to Multidimensional Modeling

Multidimensional Approach

- A Data Modeling approach with the purpose of addressing the following aspects:
 - The resulting data models should be understandable by the analytical users:

Simple.

- Using terms from the domain and appropriate for data analysis.
- Provides a framework for efficient querying
- Provides the basics for generic software development where the users can navigate in large data sets in an intuitive way

Star schema

Fact table

Big and central table. The only table with many joins connecting with the others tables

- Many Dimension Tables
 - With only one join connecting to the fact table

Asymmetric

Model

Fact Tables

- Numerical measures of process.
 - Continuous values (or represented as continuos values).
 - Additive (may be correctly added by any dimension).
 - Semi-additive (may be correctly added by some dimension but not on other dimensions).
 - Non-additive (cannot be added but some other aggregation operators are allowed)
- The goal is to summarize the information presented in fact tables.
- The granularity of a fact table is defined by a sub-set of dimensions that index it.
 - Ex: sales per day, store and product.
- Fact tables are, in general, sparse
 - Ex: If a product is not sold on a day, in a store then there is no correspondent record on the fact table.

Dimension Tables

- Tables with simple primary keys that are related to fact tables.
- The most interesting attributes the ones with textual descriptions.
 - They are used to define constraints over the data that will be analyzed.
 - They are used to group the aggregations made over the fact table measures. They will be the header's columns of the query result

Brand	Dollar amount sold	Sold Units
M-1	780	263
M-2	1044	509
M-3	213	444
M-4	95	39

Dimension Tables

- Each dimension is defined by its single primary key, which serves as the basis for referential integrity with any given fact table to which it is joined.
 - The primary key defines the dimension granularity

Dimension attributes serve as the primary source of **query constraints**, **groupings**, and **report labels**.

- they are key to making the data warehouse usable and understandable. In many ways,
 the data warehouse is only as good as the dimension attributes
- Dimension tables are the entry points into the fact table. Robust dimension attributes deliver robust analytic slicing and dicing capabilities. The dimensions implement the user interface to the data warehouse

Dimension Tables - Attributes

Dimension Tables - attributes

- The best attributes are textual and discrete.
- Sometimes when we are designing a database it is unclear whether a numeric data field extracted from a production data source is a fact or dimension attribute.
 - If it takes on lots of values and participates in calculations it is a fact
 - It is a discretely valued description that is more or less constant and participates in constraints - it is a dimensional attribute.
 - Occasionally, we can't be certain of the classification. In such cases, it may be possible to model the data field either way, as a matter of designer's prerogative.

Dimension Tables - hierarchies

- Dimension tables often represent hierarchical relationships in the business.
 - In our sample product dimension table, products roll up into brands and then into categories.
 - The hierarchical descriptive information is **stored redundantly**, in the spirit of **ease of use and query performance**. Dimension tables typically are highly denormalized.
- The dimensions are usually quite small (less than 10 percent of the total data storage requirements). Since dimension tables typically are geometrically smaller than fact tables, improving storage efficiency by normalizing or snowflaking has virtually no impact on the overall database size.

Typical result

Data for the first quarter for all stores by brand

Querying a Star Schema

NOVA SCHOOL OF

SCIENCE & TECHNOLOGY

NO/

LABORATORY FOR COMPUT SCIENCE AND INFORMATICS

Processing the SQL query for OLAP

First, the application constraints are processed for each dimension

Ex: Month = "Mars"; Year = 1997; Type of store = "Hyper";

Region = "..."; ...

- Each dimension produces a set of candidate keys:
 - Ex: Time: All time_key for which Month = "Mars"; Year = 1997;
- All the candidate keys are concatenated (Cartesian Product) to get the keys to be searched in the fact tables.
- All the hits on the fact table are grouped and aggregated.

Browsing the Dimension Tables

- "Dimension Browsing" is the user activity where the user explore the data in the dimensions with the purpose of defining constraints over the dimension's attributes and to select the level and type of intended summarization for the OLAP answers.
- Generic and convenient mechanism used by the user to specify the Queries.
 - SIMPLICITY
 - PERFORMANCE

Drill Down e Drill Up

Department	Sales Amount	Sales Units	
D-1	780	263	_
D-2	1044	509	
D-3	213	444	
D-4	95	39	

Drill down to department and Brand

Department	Brand	Sales Amount	Sales Units	
D-1	M-1	300	160	
D-1	M-2	480	103	
D-2	M-5	•••	• • • • •	
•••		• • • •	• • • • •	

Drill Down e Drill Up

Drill down is just to add some new header columns to the result table, which is a dimension attribute

Drill-Up is the reverse operations

From a rowset to an analytical view

Classical OLAP view

Store.Paris

		Act	ual		Plan			
	Toys		Clothes		Toys		Clothes	
	Sales	Costs	Sales	Costs	Sales Costs		Sales	Costs
Q1	320	200	825	750	525	603	750	629
Q2	225	220	390	250	554	600	365	400
Q3	700	600	425	630	653	725	720	530
Q4	880	850	875	700	893	875	890	889

Inefficient OLAP view

				Q1	Q2	Q3
	Paris	Toys	Sales	320	225	700
			Costs	200	220	600
		Clothes	Sales	825	390	425
Antual			Costs	750	250	630
ACIUAI	NYC	Toys	Sales	500	310	880
			Costs	450	500	850
		Clothes	Sales	210	625	875
			Costs	225	600	700
	Paris	Toys	Sales	525	554	653
			Costs	603	600	725
		Clothes	Sales	750	365	320
Plan			Costs	629	400	530
	NYC	Toys	Sales	460	520	810
			Costs	325	610	875
		Clothes	Sales	655	725	890
			Costs	780	650	889

What about Partial Totals?

Sum of	Sum of Sales		Trimestre				
Divisão	Tipo_Prod	PROD	T1	Т2	Т3	T4	Grand Total
ACCESS	AUDIOTAPE	C1-AUDIOTAPE	12128.13	11932.07	7016.2	8354.66	39431.06
		C1-CHROMECAS	1311.39	1258.68	688	936.42	4194.49
		C1-METALCAS	8335.54	8258.47	4836.6	5502.66	26933.27
		C1-STNDCAS	2481.19	2414.93	1491.6	1915.58	8303.3
	AUDIOTAPE To	tal	24256.25	23864.15	14032.4	16709.32	78862.12
	VIDEOTAPE	C2-8MMVIDEO	9657.51	10222.88	5437.3	6392.68	31710.37
		C2-HI8VIDEO	10739.28	10600.47	5778.5	7140.94	34259.19
		C2-STNDVHSVIDEO	6396.91	6472.93	4057.8	5594.56	22522.2
	VIDEOTAPE Tot	tal	26793.7	27296.28	15273.6	19128.18	88491.76
ACCESS	ORY - DIV Tota		51049.95	51160.43	29306	35837.5	167353.88
AUDIO ·	- AUDIO - COMP	A2-AMPLIFIER	108876.35	99776.02	54242.3	62432.28	325326.95
		A2-CASDECK	20434.01	17162.82	8551.8	11360.34	57508.97
		A2-CDPLAYER	148301.35	121497.44	59753.6	78906.74	408459.13
		A2-RECEIVER	86468.12	90890.41	50763.2	60066.96	288188.69
		A2-TUNER	28830.88	26136.36	13724.4	16752.34	85443.98
	AUDIO - COMP Total		392910.71	355463.05	187035.3	229518.66	1164927.72
	PORT-AUDIO	A1-PORTCAS	21857.27	22936.96	11720.8	16388.68	72903.71
		A1-PORTCD	37139.63	30166.12	13803.3	18002.58	99111.63
		A1-PORTST	30241.77	31871.52	17446.2	21478	101037.49
	PORT-AUDIO T	otal	89238.67	84974.6	42970.3	55869.26	273052.83
AUDIO ·	- DIV Total		482149.38	440437.65	230005.6	285387.92	1437980.55
VIDEO -	CAMCORDER	B3-8MMCMCDR	127708.61	122016.17	66015.4	82212.2	397952.38
		B3-HI8CMCDR	90308.93	93434.34	45232.3	56331.22	285306.79
		B3-VHSCMCDR	154074.17	147218.21	81591.7	97779.32	480663.4
	CAMCORDER TO	otal	372091.71	362668.72	192839.4	236322.74	1163922.57
	TV	B1-BWTV	11426.3	11984.54	6675.7	8512.42	38598.96
		B1-COLORTV	23693.66	19846.51	10117.1	12954.52	66611.79
		B1-PORTTV	15914.94	14511.87	7265.9	7864.24	45556.95
	TV Total		51034.9	46342.92	24058.7	29331.18	150767.7
	VCR	B2-STNDVCR	21199.71	19816.63	11910.1	13569.5	66495.94
		B2-STRVCR	37818.57	39045.7	19096.7	23015.96	118976.93
		B2-TOTALPROD	595283.24	575747.89	325688.3	404670.1	1901389.53
	VCR Total		654301.52	634610.22	356695.1	441255.56	2086862.4
VIDEO -	DIV Total		1077428.13	1043621.86	573593.2	706909.48	3401552.67
Grand T	otal		1610627.46	1535219.94	832904.8	1028134.9	5006887.1

NOVA SCHOOL OF SCIENCE & TECHNOLOGY

DW e OLAP - 68

Readings

 (The Data Warehouse Toolkit: The Definitive Guide to Dimensional Modeling (Third Edition). pag 1 to 35.

What you should know:

- Understand the fundamental differences between OLTP and the analytical activities developed on the DW or on the Data Marts: data, access, users ...
- The basic idea of Kimball school: the DW is a collection of Multidimensional Data Marts that are built incrementally and are made compatible

What you should know:

- The basic OLAP vocabulary: dimensions, mesures, aggregation, slice, drill-down and drill-up
- The basic building blocks for multidimensional models: Dimensions and Facts.
- The basic components of a Multidimensional query
- The meaning of "browsing" dimensions
- The presentation results and its relation to the OLAP operations

- What you should know:
 - The basic components of a Multidimensional query
 - The meaning of "browsing" dimensions
 - The presentation results and its relation to the OLAP operations

